Optimization and Uncertainty Quantification Based on the Four-Dimensional Variational Method

Hiromichi NAGAO

Earthquake Research Institute, The University of Tokyo

International Workshop on the Integration of (Simulation + Data + Learning): Towards Society 5.0 by h3-Open-BDEC

December 3, 2021

Data Assimilation

Integration of numerical simulations and observational data based on Bayesian statistics

Ito et al. [2017] 0.8 0.8 0.6 Observation **Jncertainty** 02 Estimated volume fraction Kano et al. [2015] 0 5 10 20 25 15 30 Time

Observation Data

hrs. late

24 hrs. later

Weather Forecasting is Data Assimilation

Four-Dimensional Variational Method (4DVar)

4DVar (adjoint method)

Uncertainty Quantification (UQ)

We have established a methodology of uncertainty quantification using second-order adjoint method

Gives feedback to experimental design!

Ito, S., H. Nagao, A. Yamanaka, Y. Tsukada, T. Koyama, M. Kano, and J. Inoue, Data assimilation for massive autonomous systems based on a second-order adjoint method, Phys. Rev. E, 94, 043307, doi:10.1103/PhysRevE.94.043307, 2016.

Laplace Approximation of Posterior

Laplace approximation

Cost function can be approximated as a second-order polynomial in the neighborhood of the optimum Θ^*

$$J(\boldsymbol{\Theta}) \sim J(\boldsymbol{\Theta}^*) + \frac{1}{2} \left(\boldsymbol{\Theta} - \boldsymbol{\Theta}^*\right)^\top H \left(\boldsymbol{\Theta} - \boldsymbol{\Theta}^*\right)$$

$$\begin{split} p(\mathbf{\Theta}|D) &\sim N(\mathbf{\Theta}^*, H^{-1}) \\ H^{-1} : \text{ inverse of the Hessian matrix } H = \frac{\partial^2 J}{\partial \mathbf{\Theta}^2} \Big|_{\mathbf{\Theta} = \mathbf{\Theta}^*} \end{split}$$

Direct computation of H^{-1} requires unpractical computation time $O(N^3)$. But, what we need are only a limited number diagonal elements of H^{-1}

$$p(\Theta_k|D) = \int d\Theta_{-k} \ p(\Theta|D) = N\left(\Theta_k^*, (H^{-1})_{k,k}\right)$$

Second-Order Adjoint Method

We want to obtain only the k-th diagonal element in H^{-1} without explicitly computing H^{-1}

Solve
$$H\mathbf{r} = \mathbf{b}$$
 using an iterative method, where $\mathbf{b} = (0, \dots, 0, 1, 0, \dots, 0)^{\mathrm{T}}$

Needs a method to compute Hessian-vector product $H \alpha$

Procedure of UQ using Second-Order Adjoint Method

- 1. Estimate an optimum Θ^* minimizing J based on the adjoint method and a gradient method (we adopt here limited-memory BFGS method)
- 2. Evaluate the uncertainty of Θ^* based on the secondorder adjoint method and a gradient method (we adopt here the conjugate residual method)

Remarks:

- 1. An array having size $O(N^2)$ is not needed.
- 2. Optimum estimation and UQ can be achieved with O(K) computation (*K*: computation cost needed for a forward computation).

The proposed method is the only one that can estimate both optimum state and its uncertainty even with a system having large degrees of freedom

Kobayashi's Phase-Field Model

First-Order (Conventional) Adjoint of Phase-Field Model

Forward

$$\tau \frac{\partial \phi_i}{\partial t} = \epsilon^2 \, \Delta_i \, \phi_i + \phi_i \left(1 - \phi_i\right) \left(\phi_i + m - \frac{1}{2}\right)$$

$$\frac{\partial m}{\partial t} = 0$$

Backward

$$-\tau \frac{\partial \tilde{\phi}_i}{\partial t} = \epsilon^2 \, \Delta_i \, \tilde{\phi}_i + \left\{ -3\phi_i^2 + (3-2m)\phi_i + m - \frac{1}{2} \right\} \tilde{\phi}_i - \frac{\partial \mathcal{J}}{\partial \phi_i} \sum_{k \in \mathcal{K}} \delta(t - t_k)$$

$$-\tau \frac{\partial \tilde{m}}{\partial t} = \sum_{j} \phi_{j} (1 - \phi_{j}) \tilde{\phi}_{j} - \frac{\partial \mathcal{J}}{\partial m} \sum_{k \in \mathcal{K}} \delta(t - t_{k})$$

Second-Order Adjoint of Phase-Field Model

Forward

$$\tau \frac{\partial \hat{\phi}_i}{\partial t} = \epsilon^2 \,\Delta_i \,\hat{\phi}_i + \left\{ -3\phi_i^2 + (3-2m)\phi_i + m - \frac{1}{2} \right\} \hat{\phi}_i + \phi_i (1-\phi_i)\hat{m}$$

$$\frac{\partial \hat{m}}{\partial t} = 0$$

Backward

$$-\tau \frac{\partial \check{\phi}_i}{\partial t} = \epsilon^2 \, \triangle_i \, \check{\phi}_i + \left\{ -3\phi_i^2 + (3-2m)\phi_i + m - \frac{1}{2} \right\} \check{\phi}_i + (6\phi_i + 2m - 3) \, \tilde{\phi}_i \check{\phi}_i + (2\phi_i - 1) \, \tilde{\phi}_i \check{m} + \left[\sum_j \frac{\partial^2 \mathcal{J}}{\partial \phi_i \partial \phi_j} \hat{\phi}_j + \frac{\partial^2 \mathcal{J}}{\partial \phi_i \partial m} \hat{m} \right] \sum_{k \in \mathcal{K}} \delta(t - t_k)$$

$$-\tau \frac{\partial \check{m}}{\partial t} = \sum_{j} \left[\phi_j (1 - \phi_j) \check{\phi}_j + (2\phi_j - 1) \, \tilde{\phi}_j \hat{\phi}_j \right] + \left[\sum_{j} \frac{\partial^2 \mathcal{J}}{\partial m \partial \phi_j} \hat{\phi}_j + \frac{\partial^2 \mathcal{J}}{\partial m^2} \hat{m} \right] \sum_{k \in \mathcal{K}} \delta(t - t_k)$$

THE UNIVERSITY OF TOKYO

Int'l WS on Simulation + Data + Learning, Dec. 3, 2021

12

Setup of Numerical Tests

Can the proposed method correctly reproduce the true parameter and true initial state from synthetic data that are generated by using the true parameter and initial state?

Synthetic observation data

True phase field obtained with time interval ΔT + Gaussian noise $N(0, \sigma^2)$

13

Results: Estimated Parameter & Initial State

true $t = 30.0\tau$ $t = 5.0\tau$ 0.4 small noise: $\sigma = 1 \times 10^{-4}$ 0.35 J = 0.13127E+03, Iteration = 3801 107 0.3 0.25 10^{6} 0.8 0.2 0.15 0.15 0.0 0.1 0.0ξ 10⁵ 104 0.6 10³ 0.05 0.4 10² 0 **Cost function** parameter m 0.2 10^{1} -0.05 10^{0} -0.1 10² 10³ 10^{4} 10⁰ 10^{2} 10^{3} 10^{4} 10⁵ 10⁰ 10^{1} 10⁵ 10^{1} $t = 5.0\tau$ iteration # iteration # $t = 30.0\tau$ large noise: $\sigma = 0.3$ 0.35 J = 0.67807E+06, Iteration = 3801 0.3 10^{7} 1 0.25 0.8 0.2 $m_{\rm est}$ 0.15 0.6 0.1 10⁶ 0.05 0.4 0 0.2 -0.05 -0.1 10^{5} 10^{2} 10³ 10^{4} 10^{5} 10⁰ 10^{1} 0 10³ 10⁰ 10¹ 10^{2} 10⁴ 10⁵

14

Parameter Estimation with Uncertainty Quantification

Application Trial to Seismic Wavefield Propagation

$$\dot{u}_{i} = v_{i} \qquad {}^{(i,j,l=x,y)}$$
$$\rho \dot{v}_{i} = \nabla_{j} \sigma_{ij}$$
$$\sigma_{ij} = \lambda \epsilon_{ll} \delta_{ij} + 2\mu \epsilon_{ij}$$
$$\epsilon_{ij} = \frac{1}{2} \left(\partial_{i} u_{j} + \partial_{j} u_{i} \right)$$

displacement u, velocity vmoduli of elasticity λ , μ strain ϵ , stress σ , density ρ

Seismic Wavefield & Underground Imaging Based on Learning

Rapid reconstruction of seismic wavefield with spatiotemporally-high resolution

Needs a combination of physical model and observation data to model wavefield <1Hz

Wavenumber integration method (Hisada, 1995) to simulate seismic waveforms with 1D underground structure (collaborating with Profs. Nakajima & Kawai for acceleration and parallelization)

Replica exchange MCMC

Construction of underground structure models in various areas in Japan based on transfer learning

Summary

- We have established a new 4DVar that enables us to estimate optimum state and parameters but also quantify their uncertainties based on the second-order adjoint method, which is applicable to a system having large degrees of freedom. Such uncertainty quantification could give feedback to designs of observations/experiments.
- We are dedicating to implement transfer learning techniques to apply seismic wavefield imaging method to efficiently estimate underground structures, accelerating and parallelizing the forward code that computes seismic waveforms.