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How are computer cycles used?
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NERSC System Utilization (Aug’17 - Jul’18)

• electronic structure DFT 
eigenvalue problems ~ 
25% of the workload

• 10 codes > 50% of the 
workload

• 35 codes > 75% of the 
workload

• Over 600 codes 
comprise the remaining 
25% of the workload.



Electronic Structure of Materials

• Schrödinger equation: �𝐻𝐻Ψ = 𝐸𝐸Ψ, Ψ(𝑟𝑟1, … , 𝑟𝑟𝑛𝑛)
– Many-particle equation
– Very expensive to be solved (exponential)
– Unpractical for large systems

• Density Functional Theory (DFT): 𝐻𝐻𝜓𝜓𝑖𝑖 = 𝐸𝐸𝑖𝑖𝜓𝜓𝑖𝑖
– Kohn and Pople, Nobel Prize in Chemistry, 1998
– Maps the many-particle problem into a 

single-particle problem
– Accurate results for structural and electronic

properties of materials
– Need to be solved self−consistently
– 𝑂𝑂(𝑁𝑁3) scaling with system size
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Self-Consistency: Nonlinear Eigenvalue Problem

initial guess {𝜓𝜓𝑖𝑖}
↓

calculate density

𝜌𝜌 𝑟𝑟 = �
𝑖𝑖=1

𝑁𝑁

𝜓𝜓𝑖𝑖 𝑟𝑟 2

↓
update 𝐻𝐻(𝜌𝜌)

↓
solve 𝐻𝐻𝜓𝜓𝑖𝑖 = 𝐸𝐸𝑖𝑖𝜓𝜓𝑖𝑖
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new set {𝜓𝜓𝑖𝑖}

Direct Methods
 ScaLAPACK
 EigenExa
 ELPA

Iterative Methods
 only a small fraction (2-10%) of 

(smallest) eigenpairs is required
 limited/poor parallel 

performance for conventional 
diagonalization and/or 
reorthogonalization, 𝑂𝑂 𝑁𝑁3

𝐻𝐻𝜓𝜓𝑖𝑖 𝑟𝑟 = −
1
2
𝛻𝛻2 + 𝑉𝑉 𝜓𝜓𝑖𝑖 𝑟𝑟 = 𝜀𝜀𝑖𝑖𝜓𝜓𝑖𝑖 𝑟𝑟

𝜓𝜓𝑖𝑖 𝑟𝑟 = �
𝑗𝑗=1

𝑚𝑚

𝑐𝑐𝑗𝑗𝑖𝑖𝜑𝜑𝑗𝑗 𝑟𝑟



Iterative Methods for 𝐻𝐻𝜓𝜓𝑖𝑖 = 𝐸𝐸𝑖𝑖𝜓𝜓𝑖𝑖

• (Jacobi-)Davidson
• Locally Optimal Block Preconditioned Conjugate 

Gradient (LOBPCG)
• (Polynomial filtered) Lanczos
• Conjugate gradient minimization of 𝜓𝜓𝑖𝑖∗𝐻𝐻𝜓𝜓𝑖𝑖
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Standard (constrained) iterative CG eigensolver
versus unconstrained iterative CG eigensolver

• Constrained CG method for iterative eigensolver
– min

Ψ
Tr Ψ𝑇𝑇𝐻𝐻Ψ , Ψ = 𝜓𝜓1,𝜓𝜓2, …𝜓𝜓𝑁𝑁 , Ψ𝑇𝑇Ψ = 𝐼𝐼

– CG steps  followed by reorthogonalization with ScaLAPACK
– Typically matrix size  100,000 to millions  (dimension of 𝐻𝐻) 
– Operations on 𝐻𝐻 and 𝜓𝜓𝑖𝑖 (matrix vector for CG steps) scale well
– Operations on small subspace scale poorly (reorthogonalization)

• Unconstrained CG method for iterative eigensolver (simplest form)  
– min

Χ
Tr 𝒮𝒮−1Χ𝑇𝑇𝐻𝐻Χ , 𝒮𝒮 = Χ𝑇𝑇Χ, Ψ = Χ𝒮𝒮−

1
2

– 𝒮𝒮−1 ≈ (2𝐼𝐼 − 𝒮𝒮) (1st order expansion)
– Functional has same minimum as constrained functional

(trial eigenvectors orthogonal at minimum)
– No operations on subspace matrix (scales to large core counts)
– Convergence properties different from constrained functional 
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Operations for constrained iterative CG eigensolver
and unconstrained iterative CG eigensolver
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• Important questions for constrained and unconstrained eigensolvers:
• Convergence rate
• Parallel scaling
• Stability

• Unconstrained formulation can be applied to other matrices
• Tested on Harwell-Boeing matrices

Constrained Solver Unconstrained Solver 

Nb = matrix dimension, No = number of eigenpairs (1-10% of Nb),  p = number of processors



PCG for 𝐴𝐴𝐴𝐴 = 𝜆𝜆𝐴𝐴:𝒐𝒐rthogonality versus scalability
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= =
Ψ𝑇𝑇 Ψ 𝑍𝑍 𝑍𝑍𝑇𝑇𝐷𝐷

overlap matrix



Novel Preconditioners for  PCG
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min
Χ

Tr 𝒮𝒮−1Χ𝑇𝑇𝐻𝐻Χ
𝒮𝒮−1 ≈ 2𝐼𝐼 − 𝒮𝒮
𝐺𝐺 = 4𝐻𝐻𝐻𝐻 − 2𝑆𝑆𝐻𝐻ℋ − 2𝐻𝐻𝐻𝐻𝒮𝒮
ℋ = 𝐻𝐻𝑇𝑇𝐻𝐻𝐻𝐻

 Option 1: Hessian 𝐴𝐴 of the 
unconstrained functional to 
precondition the gradient, 𝐴𝐴−1𝐺𝐺
(quasi Newton step) 
 solve 𝐴𝐴𝐴𝐴 = 𝐺𝐺 iteratively
 𝑆𝑆−1or �̃�𝐴−1 as preconditioner 

for the inner solver (with K
iterations)

 �̃�𝐴 ≈ 𝐴𝐴
 Option 2: use 𝑆𝑆−1or �̃�𝐴−1 to 

precondition the unconstrained 
functional minimization
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Numerical Experiments

• CP2K 
– quantum chemistry and solid state physics package
– DFT using mixed Gaussian and plane waves approaches
– Non-orthogonal basis, generalized eigenvalue problem 𝐻𝐻𝐻𝐻 = 𝑆𝑆𝐻𝐻𝐸𝐸

• Cray XC40 system (cori @ NERSC)
– 2,388 Intel Xeon 16-core Intel Xeon Haswell   
– 9,688 68-core Intel Xeon Phi Knights Landing (KNL)
– Hybrid MPI+OpenMP implementation
– Intel compiler, MKL, ELPA, and LIBXSMM (latest available releases)
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Del Ben, Marques and Canning, Improved Unconstrained Energy Functional Method for 
Eigensolvers in Electronic Structure Calculations, ICPP 2019, Kyoto, Japan.



Systems Used in the Numerical Experiments
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Systems used in the numerical experiments, in increasing order of “complexity” for convergence: 
1024 molecules of bulk liquid water, supramolecular catalyst gold(III)-complex, bilayer of MoS2-
WSe2, and divacancy point defect in silicon. The number of atoms range from 2,247 to 12,288. 



Physical and Computational Parameters
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System Label Atoms Basis Nb No Nb/No gap(AU)

Bulk liquid water Water-1024 3,072 TZVP 29,696 4,096 0.14 0.128
Water-2048 6,144 TZVP 59,392 8,192 0.14
Water-4096 12,288 TZVP 118,784 16,384 0.14

Solvated catalyst complex Complex 2,590 TZVP 26,339 3,605 0.14 0.052
MoS2-WSe2 bilayer BiLayer 2,247 TZVP 51,681 9,737 0.19 0.035
Divacancy defect in silicon SiDivac 2,742 TZVP 46,614 5,484 0.12 0.013

SiDivac-SZV 2,742 SZV 10,968 5,484 0.5
SiDivac-DZVP 2,742 DZVP 35,646 5,484 0.15
SiDivac-TZV2P 2,742 TZV2P 79,518 5,484 0.07

Basic physical and computational parameters of the systems employed in the numerical experiments. 
Nb is the basis set size, No is the number of eigenvectors to be computed (number of wavefunctions

needed to build the electronic density), and gap is the energy difference between eigenvalues No and 
No+1 in atomic units (AU), the unit employed to express H. 



Convergence of the SCF Procedure
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Convergence of the SCF procedure. Four setups; the average time for a single SCF step is given in 
parenthesis. Left: Complex. Right: SiDivac. 



Convergence of the Energy
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Convergence of the energy (unconstrained objective function) for a single unconstrained 
functional diagonalization (unconstrained subspace minimization). Five setups; the time for a 

single unconstrained-PCG iteration is given in parenthesis. Left: Complex. Right: SiDivac. 



Time to Solution for Full SCF 
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Time to solution for full SCF convergence compared to direct solvers (ScaLAPACK and ELPA). 
(a) Water-1024, (b) Complex, (c) BiLayer and (d) SiDivac. Actual times are given in parenthesis. 
For SiDivac, B* and D* are times obtained with a larger basis (about 1.7 times larger than in B 

and D, with 160 KNL nodes).

(a) (b)

(c) (d)



Strong Scaling
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Left: OpenMP threads per MPI task for a fixed number of MPI tasks  (2560), Water-1024 (method 
D in the figure above). Right: time to solution for bulk liquid water with 1024, 2048 and 4096 

molecules (method D in the previous slide).



Summary
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Main conclusions:
• Unconstrained CG offers good parallel scalability and 

outperforms standard diagonalization
• Implementation within a localized basis set allows for efficient 

sparse and dense linear algebra implementations

Ongoing and future work:
• Sub-group parallelization for small matrix multiplication
• Implementation in a plane wave basis framework 

(http://qboxcode.org)
• GPU implementation and comparisons with other iterative 

strategies
• Applications of unconstrained minimization in other areas



Thank you !
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