2021/11/30 International Workshop on the Integration of (Simulation + Data + Learning) Towards Society h3-Open-BDEC

Enhancement of Molecular Dynamics Simulation by Machine Learning

Hayato SHIBA Supercomputing Research Division Information Technology Center, University of Tokyo

Joint research with Takashi Shimokawabe

Towards "long-time" molecular dynamics (> milliseconds)

— Rare events = phenomena that takes extremely long time due to potential energy barriers ex) allosteric events, nucleation, crystallization, fracture, ...

- Due to the approach of Moore's law, direct MD simulations for >10¹⁰ steps ($\rightleftharpoons \mu s$) will remain difficult for coming years.
- Biased simulation / enhanced sampling can enforce the system to overcome this energy barrier by additional constraints. However,
 - properly describing the energy landscape (energy surface).
 - It can only describe dynamical paths between a small number of energy minima.
- For many types of complex & time-dependent molecular dynamics, different approaches may be needed.

Glasses

- Formed by rapidly cooling a liquid
- keep random structure \simeq liquid
- particle motion is frozen \simeq solid

glasses

= liquids with diverging timescale

There are little in structures, the DYNAMICS mainly matter

\checkmark MD simulation is a strong tool

- slow dynamics = intermittent jumps
- for most of time, particles are just vibrating

(we may want to skip by AI)

nevertheless the dynamics is heterogeneous

3D Kob-Andersen LJ model

$$v_{\alpha\beta}(r) = 4\epsilon_{\alpha\beta} \left[\left(\frac{\sigma_{\alpha\beta}}{r}\right)^{12} - \left(\frac{\sigma_{\alpha\beta}}{r}\right)^{6} \right]$$

$$\epsilon_{22} = 0.5\epsilon_{11}, \ \epsilon_{12} = 1.5\epsilon_{11}$$

 $\sigma_{22} = 0.8\sigma_{11}, \ \sigma_{12} = 0.88\sigma_{11}$

with the composition 80(1):20(2)

GNN architechture

N = 4096

ENCODER

nodes #=4096

particle type (1 c

edges #~170000

relative position

node = particle edge = nearby pairs $(R_{ij} < 2.0\sigma_{AA})$

	DECODER (DeepMind,2020)	DECODER (Our work)
or 2)	propensity $\langle \mathbf{r}_{i}(t + \Delta t) - \mathbf{r}_{i}(t) \rangle$	
(R ij)		neighbor distance chan $\langle R_{ij}(t + \Delta t) - R_{ij}(t) \rangle$

- propensity
 - = self motion of one particle
- neighbor distance change
 - = larger # of data structural changeover

some physics may be informed

We use the dataset distributed by DeepMind group.

- prepare 400 indep. particle configurations (N = 4,096) by annealing — run 30 indep. velocities from each (isoconfigurational ensemble)
 - \rightarrow 12,000 simulations
 - # in glasses, propensity tends to be determined by the velocities
 - and not depend strongly on the velocities.
- data augmentation by 24 cubic rotation at random
- compute and store the particle motion after long-time MD.

Dataset

Learning

Source code

https://github.com/deepmind/deepmind-research

JAX = [Automatic differentiation] + [XLA compiling of NumPy for GPUs]

additional packages required for ML GNN = jraph + dm-haiku, optimizer = optax

Time per epoch (learning for 400 configs.) measured on Wisteria-A, data I/O not included

1 CPU core	3240 s / epoch
1 GPU	168 S / epoch
1 GPU @jax.jit (XLA compilation)	8.5 S / epoch

1 GPU = NVIDIA A100 SVMe 40GB

data parallel not yet test for technical reasons

T = 0.44, prediction over 3.3×10^7 MD steps ($\simeq 3\tau_{\alpha}$)

GNN predictions

node learning = particle propensity (reproduction) # =4096

edge learning = change in pair distance (this study) #~170000

in 2D cross sections

ground truth

T = 0.44, prediction over 4.5×10^5 MD steps ($\simeq 0.1\tau_{\alpha}$) in 2D cross sections

ML predictions

node propensity

Pearson correlation

 $\rho = 0.597$

edge propensity

Pearson correlation

 $\rho = 0.789$

"Hot spots"

ground truth

errors

- \checkmark Power of GNNs for predicting the slow dynamics from one MD snap. based on a recent work of DeepMind group (2020) — the long-time dynamics is surprisingly well predicted by learning changes in pair distances.
- \checkmark We are stepping toward the "Al glass simulator".

Summary