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Mission: 
Convergence of AI, Big Data and HPC 

Research and software 
development for accelerating 

HPC workloads and 
applications by using Big 

Data/AI techniques

AI/BD for HPC

Research and software 
development for accelerating 

AI/Big data workloads and 
applications on HPC systems 

(i.e., large-scale systems)

HPC for AI/BD

Fundamental R&D in HPC



• Fundamental R&D in HPC
• Reproducibility in MPI/OpenMP applications by record-and-replay techniques
• Design space exploration for the next-gen supercomputers (Jens Domke, Matsuoka team,  AIST)
• Auto-detection of checkpoint variables (Nanchang Hangkong University, PNNL) 
• ABFT for tensor operations in deep learning framework (Nanchang Hangkong University, PNNL) 
• Failure analysis on Fugaku (Shoji, Yamamoto, Northeastern Univ.) 
• Benchmarking and Performance analysis of big data applications on NVDIMM (Andres Rubio Proano, FSU) 
• I/O optimization for 2D/3D sub-tiling of MPI-IO on a near-node local storage architecture (KTH) 

• HPC for AI/BD
• Data platform for Fugaku and RSC facilities, SPring-8 and SACLA (Matsuda, Kaneyama, Harada, Shoji +RSC)
• DL4Fugaku: Deep learning framework tuning on Fugaku (Matsuoka team, Imamura team, Fujitsu)
• Storage performance analysis and storage design exploration for deep learning (Takaaki Fukai)

• AI/BD for HPC
• Big data compression with AI techniques  (FSU)

Research projects and collaborations HIGPH PERFORMANCE
BIG DATA
RESEARCH TEAM
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Generation: Scientific big data is generated every day all over the world
— LHC (Large Hadron Collider) in CERN generated about 88PB of data in 2018 [1]

• “Data archival is expected to be two-times higher during Run 3 and five-times higher or more during Run 4 
(foreseen for 2026 to 2029). “

Big Data Generation and Transfer

[1] Esra Ozcesmeci, “LHC: pushing computing to the limits”, https://home.cern/news/news/computing/lhc-pushing-computing-limits March 1st, 2019
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https://home.cern/news/news/computing/lhc-pushing-computing-limits
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Transfer: Data transfer is an essential part of data analytics
• Generated data from sensors must be transferred to internal computers for the analysis
• In some case, the facilities needs to transfer the data to external collaborators via WAN
– e.g. ) In LHC, 830 PB of data and 1.1 billion files were transferred all over the world [1]

Big Data Generation and Transfer (Cont’d)

[1] Esra Ozcesmeci, “LHC: pushing computing to the limits”, https://home.cern/news/news/computing/lhc-pushing-computing-limits March 1st, 2019

Efficient data transfer and its management is important in big data analysis

Big data transfer

Sensors Internal/External
Computers

https://home.cern/news/news/computing/lhc-pushing-computing-limits
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RIKEN has SPring-8 large synchrotron radiation facility 
— Opened in 1997 in Harima, located in the same Hyogo prefecture as R-CCS
— Managed by RIKEN, with Japan synchrotron radiation research institute (JASRI)
— SPring-8 stands for Super Photon ring-8 GeV

• 8 GeV (giga electron volts) is the energy of electron beam circulation in the storage ring
— Generates PB-order of big data

SPring-8

SPring-8（FY1997～）

RIKEN SPring-8 Center (RSC)
Tokyo

Hyogo



Research and development of an infrastructure for collecting, 
analyzing and utilizing big data in large-scale research facilities 

(Fugaku/SPring-8/SACLA) Project Leader: Kento Sato
［Overview］

Members
Kento Sato, R-CCS
Fumiyoshi Shoji, R-CCS
Motohiko Matsuda, R-CCS
Kaneyama Hidetomo, R-CCS
Hiroshi Harada, R-CCS
Jorji Nonaka, R-CCS
Kentaro Sano, R-CCS
Masaaki Kondo, R-CCS
Tomohiro Ueno, R-CCS
Takaki Hatsui, RSC
Yasumasa Joti, RSC

［Objective］
• The Objective of this project is to establish a "big data infrastructure" that enables data collection, analysis, and utilization between 

SPring-8/SACLA and Fugaku. We are working on following sub-proejcts:
• (1) Data pre-processing infrastructure: To efficiently store experimental data obtained from sensors, we perform data 

conversion and pre-processing at the hardware level using FPGA 
• (2) Data compression and transfer infrastructure: We develop data compression and transfer infrastructure 
• (3) Data analysis infrastructure: We will build an infrastructure (workflow tools and deep learning framework) to efficiently

analyze the data in HPC systems
• (4) Data utilization infrastructure: We will build a data utilization infrastructure to make use of the collected primary data and 

analysis results (e.g., Single sign-on authentication, GakuNin RDM etc.)

Project team members

Big data
（転送後）

Automatic
data transfer

layer

Data 
(De)compression

layer

Bigdata
(Temporary data）

(1) Data pre-processing

gfpcopy client
(auto-send)

gfpcopy client 
(auto-recv)

Decompression

SPring-8
temp. storage HPCI StorageData conversion/pre-

processing edge server

Compression

SPring-8/SACLA

Supercomputer Fugaku

AI/BD frameworks

(2)Data compression/transfer (3)Data processing

(4) Data sharing and usability

R-CCS
Storage
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§ We started data transfer service from SACLA to HPCI shared storage
— To facilitates data analitycs in HPCI systems inlucidng Fugaku

§ We are planing to expand the service to SPring-8 synchortron radiation facility and enhance the 
usability (Common authentication scheme, GakuNin RDM etc.)

Data transfer service in SACLA

Source (May 14, 2021): https://www.riken.jp/pr/news/2021/20210514_1/

Data Transfer Service to HPCI Shared Storage 
Toward the creation of innovative achievement through SACLA

Source (May 14, 2021): http://xfel.riken.jp/users/bml09-1.html

SACLA HPC: 
Data Transfer Service to HPCI Shared Storage 
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Big data transfer in SPring-8 

§ SPring-8 public beamlines (26 BLs) generated 0.32 PB/year in 2017
§ With the next generation detector (CITIUS), it is projected that the facility will 

generate 1.3 ExaB of raw data per year in 2025
— Actual transfer size can be reduced to 100-400 PB by

• Image averaging/extraction
• Reducing duty ratio to throttle data generation rate

We are trying to further compress this big data 
to accelerate data transfer from sensors to HPC systems

Facility

Sensor
Near-sensor 

servers

PE

PE

PE

PE

Internal/External 
computers
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1.3 EB

Image averaging/extraction and throttling

Intermediate
Storage
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Rupak Roy†1 , Kento Sato†2, Subhadeep Bhattacharya†2, Xingang Fang†2, Yasumasa Joti†3,
Takaki Hatsui†3 , Toshiyuki Nishiyama Hiraki†3, Jian Guo †2and Weikuan Yu†1
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[1] Rupak Roy, Kento Sato, Subhadeep Bhattacharya, Xingang Fang, Yasumasa Joti, Takaki Hatsui, Toshiyuki Hiraki, Jian Guo and Weikuan Yu, “Compression of Time Evolutionary Image 
Data through Predictive Deep Neural Networks”, In the proceedings of the 21 IEEE/ACM International Symposium on Cluster, Cloud and Internet Computing (CCGrid 2021), May, 2021

in a second) and compression ratio (the ratio of the data
size before and after compression). Otherwise, complicated
(de)compression can achieve higher compression ratio with
lower speed while simple (de)compression may achieve lower
compression ratio with higher speed. Time evolutionary data
offer additional opportunities to apply predictive DNN tech-
niques. However, DNN techniques can take more time than
simple algorithms such as curve fitting models. Thus, applying
DNN for effective compression (good trade-off between com-
pression ratio and (de) compression time) of time evolutionary
data remains an interesting research challenge.

In this paper, we develop an efficient (de)compression
framework called TEZIP (Time Evolutionary ZIP) that can
support dynamic lossy and lossless compression of time evolu-
tionary image frames with high compression ratio and speed.
TEZIP employs PredNet to exploit the temporal locality of
time evolutionary data, predict the next image frames and
derive the resulting differences between the predicted frame
and the actual frame as a delta frame that is much more com-
pressible. Next, we apply three encoding techniques to exploit
the spatial similarities in the delta frames, point-wise relative
error-bounded quantization, density-based spatial encoding
and entropy encoding. Finally, we apply lossless compressors
to compress these encoded frames. To pinpoint the best trade-
off between (de)compression ratio and speed, we also propose
window-based prediction algorithms. Specifically, this paper
makes the following contributions:

• A new application of neural network technologies for data
compression through an extension to the PredNet model
that exploits the temporal locality of time evolutionary
image data and supports both integer and floating-point
value prediction of real-world datasets;

• Novel encoding techniques exploiting spatial similarities,
point-wise relative error-bounded quantization, density-
based spatial encoding and entropy encoding;

• Flexible window-based prediction algorithms to find the
best trade-off between compression ratio and compression
speed while maintaining the image quality.

• An empirical evaluation showing effectiveness of TEZIP
with real-world time evolutionary data by comparing with
popular lossy and lossless compressors.

Especially, our evaluation on real-world time evolutionary
data generated from SPring-8 [21] shows that, in terms of
compression ratio, TEZIP outperforms existing lossless com-
pressors such as x265 by up to 3.2x and lossy compressors
such as SZ by up to 3.3x. To the best of our knowledge,
TEZIP is the first compressor that can accurately predict time
evolutionary data for effective data reduction and pinpoint a
good trade-off for balanced compression ratio and speed.

II. BACKGROUND

Time Evolutionary Data: Synchrotron radiation facilities
are used to elucidate microscopic structures of a varieties of
materials from physical, chemical, to biological and medical
domains. With bright X-rays in the synchrotron radiation fa-
cilities , scientists can observe the evolution of the structure in

time. Such capabilities shed light on the origin of various phe-
nomena such as the biological function of proteins, the causes
of battery deterioration, etc. Along with the improvement on
X-ray sources, X-ray imaging detector technologies are rapidly
developing. For example, a large synchrotron radiation facility
(SPring-8) with about 60 beamlines is planning to upgrade
these beamlines with the next generation detector (CITIUS).
In 2025, it is projected, that a single beamline will generate
1.3 Exabytes of data per year in raw format [21].
Predictive Coding Network (PredNet): To achieve fast
transfer of compressed data in synchrotron radiation and
similar facilities, effective prediction is important. For accurate
prediction, we use a deep convolutional recurrent neural net-
work which can exploit a key feature of time evolutionary
data which is the similarity between consecutive images.
The changes observed between consecutive time evolutionary
images are mostly rule-based changes, e.g., certain rules from
physical systems. PredNet (Predictive coding NETwork) is
such a deep convolutional recurrent neural network. PredNet
is a self-supervised neural network model designed to learn
predictive coding of video frames. PredNet can learn represen-
tations that are relatively tolerant to object transformations.
It can also efficiently decode latent object parameters (e.g.
pose) and identify objects with few training frames which
makes it a suitable candidate for our purpose. Given one
RGB image frame from time evolutionary dataset, the model
trained by PredNet can predict the next RGB image frame
for the inference phase. PredNet accepts both floating-point
and integer values for RGB values and predicts the next RGB
image in floating-point. For the training phase, PredNet is
designed to receive RGB values as the training data, and then
produce a trained model that can learn the hidden trends of the
pixel movement and predict future frames from base frames.
We leverage this prediction engine of PredNet for effective
compression of time evolutionary data.

III. TEZIP: (DE)COMPRESSION OF TIME EVOLUTIONARY
IMAGE FRAMES

Time 
evolutionary 
image frames

Time evolutionary data
(Training data)

B0

B0

Original frames (or decompressed image frames)

Predicted frames

Delta frames

Compressed
frames

B1 B2 Bn

D1 D2 Dn

P1 P2 Pn

C1 C2 Cn

2
3 3 3

Trained model

4 4 45 6 6 6

7
8 8 8

9

1

: Model training

: Compression workflow

: Decompression workflow

Fig. 1. Workflows of TEZIP (de)compression

We explain how to compress time evolutionary image
frames with high ratio in this section and elaborate how to
improve compression speed in Section IV.

More precisely, PredNet is a self-supervised neural network such that the
loss function of the (i + 1)th predicted frame from the ith frame uses the
actual (i+ 1)th frame as its supervisory image frame.
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Fig. 8. Compression ratio with lossless compressors.

In our evaluation, we select the lossless option of x265. All
other lossless compressors have been configured with default
settings. Figure 8 shows that TEZIP outperforms these lossless
compressors in terms of compression ratio for all our datasets.
TEZIP achieves an improvement up to 3.2⇥ in terms of
compression ratio for these datasets. On average (shown as
arithmetic mean or AMEAN in Figure 8), lossless TEZIP
delivers 2.1⇥ better compression ratio compared to the second
best lossless compressor, x265 (lossless).

These results show that Baseline depends heavily on the
entropy between consecutive frames. Varying entropy levels
lead to fluctuating compression ratios for Baseline, lower than
TEZIP on average. In contrast, TEZIP predicts frames with
high accuracy even when the entropy is high. For example,
multiple transforming objects in a frame lead to high entropy
and low compression ratios for Baseline. In TEZIP, our trained
PredNet can predict the next frames with higher accuracy,
resulting in high compression ratios.

Fig. 9. (De)compression time with lossless compressors.

We have also compared TEZIP with lossless compressors.
From our evaluation, x265 (lossless) and FFV1 performs
better than other lossless compressors in terms of compression
ratio. Thus, we only show (de)compression times of x265
and FFV1 with TEZIP (Figure 9). TEZIP outperforms other
lossless compressors for four datasets with a large number
of frames(� 800) while it performs comparably for the other
four smaller datasets. Our experiments show that, in terms
of decompression time, TEZIP is generally better than x265
for most of the datasets, while FFV1 generally outperforms
TEZIP. In terms of the overall combined time (compression

and decompression) TEZIP performs 28% better than x265,
while being comparable to FFV1.

Fig. 10. Compression ratio with different lossy compressors

2) Lossy Compression: For lossy compression, we config-
ure TEZIP to handle different point-wise relative error bounds.
In our experiments we have varied the point-wise relative
error bound (↵) for different datasets based on the technique
described later in this section. We compare our lossy TEZIP
scheme with lossy compressors like SZ [13] and ZFP [26].
No comparisons are made to lossy video codecs (e.g. MPEG4,
X264) because they cannot be tuned with point-wise relative
error bounds and they are also not suitable for lossy floating-
point RGB value compression.

ZFP uses a block-based floating-point representation. In a
single block, all values are represented with respect to a single
common exponent. For a block with a wide range of values,
ZFP has no means to control the point-wise relative error
bound for each value. So we devise a method to compare
our point-wise relative error bounded TEZIP to other lossy
compressors with an equivalent amount of errors. This method
includes three steps: (1) We run ZFP with a certain absolute
error-bound. (2) Then, we measure the maximum of point-wise
errors for the decoded data; (3) Finally, we use the maximum
error as the error bound in TEZIP to evaluate its compression
ratio for each dataset.

With this method, we configure SZ and TEZIP with the
same maximum point-wise relative decompression errors as
ZFP, for a fair comparison among the three. Figure 10 shows
that, for different datasets, TEZIP achieves an improvement
up to 3.3x than the second best (SZ) in terms of compression
ratio. On average, TEZIP delivers an improvement of 1.7x
compared to SZ in terms of compression ratio.

We also compare TEZIP with SZ (Best Compressor mode).
As mentioned earlier, ZFP does not have a point-wise relative
error feature which is the primary error control feature of
TEZIP. So we do not consider ZFP as a candidate for com-
paring (de)compression time. Our evaluation shows that SZ
performs better than other lossy compressors/codecs in terms
of compression ratio. Thus, we only show the (de)compression
times of SZ with TEZIP (Figure 11). Our evaluation shows
that lossy TEZIP has a compression time comparable to SZ.
But in case of decompression, SZ is much faster compared to
TEZIP. As a future study, we plan to parallelize the prediction

��

• We proposed new AI-driven data compressor (TEZIP) for time evolutaionary data
• We achieved higher compration ration compared to existing video encoder (Zstd, HFYU, FFV1, 

x.265 ) 
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Prediction is one of keys for good compression
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§ PredNet [1]
— Deep recurrent convolutional neural network
— Given a frame of pictures/video, this NN can predict multiple future frames

We use deep neural network (PredNet) for prediction

Published as a conference paper at ICLR 2017

Predicted

7
Predicted

Actual

Scrambled

Figure 4: PredNet predictions for car-cam videos. The first rows contain ground truth and the second
rows contain predictions. The sequence below the red line was temporally scrambled. The model
was trained on the KITTI dataset and sequences shown are from the CalTech Pedestrian dataset.

respectively, compared to the CNN-LSTM Encoder-Decoder. More details, as well as a thorough
investigation of systematically simplified models on the continuum between the PredNet and the
CNN-LSTM Encoder-Decoder can be found in Appendix 5.1. Briefly, the elementwise subtraction
operation in the PredNet seems to be beneficial, and the nonlinearity of positive/negative splitting
also adds modest improvements. Finally, while these experiments measure the benefits of each com-
ponent of our model, we also directly compare against recent work in a similar car-cam setting, by
reporting results on a 64x64 pixel, grayscale car-cam dataset released by Brabandere et al. (2016).
Our PredNet model outperforms the model by Brabandere et al. (2016) by 29%. Details can be
found in Appendix 5.2. Also in Appendix 5.2, we present results for the Human3.6M (Ionescu
et al., 2014) dataset, as reported by Finn et al. (2016). Without re-optimizing hyperparameters, our

8

t=1 t=2 t=3 t=5t=4 t=6 t=7 t=8 t=9 t=10

Prediction
[1] Lotter, W., Kreiman, G., Cox, D.: Deep predictive coding networks for video prediction and 
unsupervised learning. arXiv preprint arXiv:1605.08104 (2016)

https://coxlab.github.io/prednet/
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§ We train PredNet to learn how pixels move and how fast
— i.e.) Giving a number of time evolutional frames to PredNet

§ When compressing frames from t=1 to t=5, we predict future frames from original data (t=1)

§ We compute diff, apply series of encoding

§ We only store (1) base frame data (t=1) and (2) compressed data

Compression: Predict future frames and encode

t=1 t=2 t=3 t=5t=4

PredNet

diff diff diff diff

Additional 
encoding

Compressed
data

Compressed
data

Compressed
data

Compressed
data

Training data:
Time evolutional frame 

data set

PredNet

Training Inference + Data compression
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§ Quantization is a key data conversion to give good compression rate 
— This data conversion tries to maximize data compression rate while bounding certain-level errors

§ Point-wise relative error bound
— All the individual values are kept below a specified error bound threshold (!)
— Formulation
• Give original data: ! = #!, #", … , and quantized data: !# = ##!, ##", … ,
• The following inequality holds for each data point:

Encoding workflow 

Di Ci
Density-based

Spatial 
Encoding
(Lossless)

Point-wise relative 
error-bounded 
quantization

(Lossless or Lossy)

Entropy 
Encoding
(Lossless)

Lossless 
Compressor
(Lossless)

Decompression

Compression

max
"!∈$, ""!∈$&

$' − $′'
$'

≤ (
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Point-wise relative error-bounded quantization (Lossless)

Example 1: error-bound (!) = 0 (è lossless)
— Option: -M PW_REL -P 0 

60 40 20

40 20 60

20 20 60

Bi

60 40 25

45 10 55

25 25 60

Pi

- =
Di(0)= 0 Di(1)= 0 Di(2)= -5

Di(3)= -5 Di(4)= 10 Di(5)=5

Di(6)= -5 Di(7)= -5 Di(8)=  0

Di

-10
-9
-8
-7
-6
-5
-4
-3
-2
-1
0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

0 1 2 3 4 5 6 7 8

Density-based 
Spatial Encoding

(lossless)

Fig. 2. Di(k): One-dementional vector  expression of Di

Di(k)

kPass delta values to density-based spatial 
encoding as they are
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Point-wise relative error-bounded quantization (lossy)
Example 2: error-bound (!) = 0.1 (è Lossy 10% of errors )

— Option: -M PW_REL -P 0.1 

60±6 40±4 20±2

40±4 20±2 60±6

20±2 20±2 60±6

Bi

60 40 25

45 10 55

25 25 60

Pi

- =
0±6 0±4 -5±2

-5±4 10±2 5±6

-5±2 -5±2 0±6

Ei

Density-based 
Spatial 

Encoding
(lossless)

Fig. 2. Di(k): One-dementional vector  expression of Di

-10
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-8
-7
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-5
-4
-3
-2
-1
0
1
2
3
4
5
6
7
8
9

10
11
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13
14
15

0 1 2 3 4 5 6 7 8

Delta values w/o Quantification
Delta values w/   Quantification (10%)

-3.5 -3.5 -3.5

-3.5 9.5 9.5

-4.5 -4.5 -4.5

Ei (k) is error bound of Di (k)
For example, Ei (0) = [-6, 6], Ei (5) = [-1, 11], 

The lossy mode allows delta values to be manipulated 
withint the error-bound (à window)

Compute a common range of windows from the beginning 
until it becomes empty

— e.g.) The first common range is [-3, -4]  

Continue to the end values and manimipulate values to 
average values of each common range

— e.g.) [-3, -4] à -3.5, [8, 11]à9.5, [-7, -3]à -4.5
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Following encodings

§ Density-based Spatial Encoding
— After the quantization, we see sequences of the same values (à clusters)
— We detect clusters and store delta in each cluster
• It is likely that this encoding results in sequences of zeros

§ Entropy Encoding
— Replace highly recurrent values with smaller bits and replace less recurrent values with 

longer bits
— e.g.) {0, 0, …,0} à 0 , {-3.5, -3.5, …, -3.5} à 1, {-9.5, -9.5, … ,  -9.5} à 2

§ Apply lossless compressor
— We used Zstd in this work
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§ TEZIP achieves an improvement up to 3.2× in terms of 
compression ratio.

§ On average, lossless TEZIP delivers 2.1× better 
compression ratio compared to the second-best lossless 
compressor x265

§ “Baseline” computes delta values from the previous 
frame 

TEZIP achieves high comprassion rate with comparable 
compression time
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Fig. 8. Compression ratio with lossless compressors.

In our evaluation, we select the lossless option of x265. All
other lossless compressors have been configured with default
settings. Figure 8 shows that TEZIP outperforms these lossless
compressors in terms of compression ratio for all our datasets.
TEZIP achieves an improvement up to 3.2⇥ in terms of
compression ratio for these datasets. On average (shown as
arithmetic mean or AMEAN in Figure 8), lossless TEZIP
delivers 2.1⇥ better compression ratio compared to the second
best lossless compressor, x265 (lossless).

These results show that Baseline depends heavily on the
entropy between consecutive frames. Varying entropy levels
lead to fluctuating compression ratios for Baseline, lower than
TEZIP on average. In contrast, TEZIP predicts frames with
high accuracy even when the entropy is high. For example,
multiple transforming objects in a frame lead to high entropy
and low compression ratios for Baseline. In TEZIP, our trained
PredNet can predict the next frames with higher accuracy,
resulting in high compression ratios.

Fig. 9. (De)compression time with lossless compressors.

We have also compared TEZIP with lossless compressors.
From our evaluation, x265 (lossless) and FFV1 performs
better than other lossless compressors in terms of compression
ratio. Thus, we only show (de)compression times of x265
and FFV1 with TEZIP (Figure 9). TEZIP outperforms other
lossless compressors for four datasets with a large number
of frames(� 800) while it performs comparably for the other
four smaller datasets. Our experiments show that, in terms
of decompression time, TEZIP is generally better than x265
for most of the datasets, while FFV1 generally outperforms
TEZIP. In terms of the overall combined time (compression

and decompression) TEZIP performs 28% better than x265,
while being comparable to FFV1.

Fig. 10. Compression ratio with different lossy compressors

2) Lossy Compression: For lossy compression, we config-
ure TEZIP to handle different point-wise relative error bounds.
In our experiments we have varied the point-wise relative
error bound (↵) for different datasets based on the technique
described later in this section. We compare our lossy TEZIP
scheme with lossy compressors like SZ [13] and ZFP [26].
No comparisons are made to lossy video codecs (e.g. MPEG4,
X264) because they cannot be tuned with point-wise relative
error bounds and they are also not suitable for lossy floating-
point RGB value compression.

ZFP uses a block-based floating-point representation. In a
single block, all values are represented with respect to a single
common exponent. For a block with a wide range of values,
ZFP has no means to control the point-wise relative error
bound for each value. So we devise a method to compare
our point-wise relative error bounded TEZIP to other lossy
compressors with an equivalent amount of errors. This method
includes three steps: (1) We run ZFP with a certain absolute
error-bound. (2) Then, we measure the maximum of point-wise
errors for the decoded data; (3) Finally, we use the maximum
error as the error bound in TEZIP to evaluate its compression
ratio for each dataset.

With this method, we configure SZ and TEZIP with the
same maximum point-wise relative decompression errors as
ZFP, for a fair comparison among the three. Figure 10 shows
that, for different datasets, TEZIP achieves an improvement
up to 3.3x than the second best (SZ) in terms of compression
ratio. On average, TEZIP delivers an improvement of 1.7x
compared to SZ in terms of compression ratio.

We also compare TEZIP with SZ (Best Compressor mode).
As mentioned earlier, ZFP does not have a point-wise relative
error feature which is the primary error control feature of
TEZIP. So we do not consider ZFP as a candidate for com-
paring (de)compression time. Our evaluation shows that SZ
performs better than other lossy compressors/codecs in terms
of compression ratio. Thus, we only show the (de)compression
times of SZ with TEZIP (Figure 11). Our evaluation shows
that lossy TEZIP has a compression time comparable to SZ.
But in case of decompression, SZ is much faster compared to
TEZIP. As a future study, we plan to parallelize the prediction
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Fig. 8. Compression ratio with lossless compressors.

In our evaluation, we select the lossless option of x265. All
other lossless compressors have been configured with default
settings. Figure 8 shows that TEZIP outperforms these lossless
compressors in terms of compression ratio for all our datasets.
TEZIP achieves an improvement up to 3.2⇥ in terms of
compression ratio for these datasets. On average (shown as
arithmetic mean or AMEAN in Figure 8), lossless TEZIP
delivers 2.1⇥ better compression ratio compared to the second
best lossless compressor, x265 (lossless).

These results show that Baseline depends heavily on the
entropy between consecutive frames. Varying entropy levels
lead to fluctuating compression ratios for Baseline, lower than
TEZIP on average. In contrast, TEZIP predicts frames with
high accuracy even when the entropy is high. For example,
multiple transforming objects in a frame lead to high entropy
and low compression ratios for Baseline. In TEZIP, our trained
PredNet can predict the next frames with higher accuracy,
resulting in high compression ratios.

Fig. 9. (De)compression time with lossless compressors.

We have also compared TEZIP with lossless compressors.
From our evaluation, x265 (lossless) and FFV1 performs
better than other lossless compressors in terms of compression
ratio. Thus, we only show (de)compression times of x265
and FFV1 with TEZIP (Figure 9). TEZIP outperforms other
lossless compressors for four datasets with a large number
of frames(� 800) while it performs comparably for the other
four smaller datasets. Our experiments show that, in terms
of decompression time, TEZIP is generally better than x265
for most of the datasets, while FFV1 generally outperforms
TEZIP. In terms of the overall combined time (compression

and decompression) TEZIP performs 28% better than x265,
while being comparable to FFV1.

Fig. 10. Compression ratio with different lossy compressors

2) Lossy Compression: For lossy compression, we config-
ure TEZIP to handle different point-wise relative error bounds.
In our experiments we have varied the point-wise relative
error bound (↵) for different datasets based on the technique
described later in this section. We compare our lossy TEZIP
scheme with lossy compressors like SZ [13] and ZFP [26].
No comparisons are made to lossy video codecs (e.g. MPEG4,
X264) because they cannot be tuned with point-wise relative
error bounds and they are also not suitable for lossy floating-
point RGB value compression.

ZFP uses a block-based floating-point representation. In a
single block, all values are represented with respect to a single
common exponent. For a block with a wide range of values,
ZFP has no means to control the point-wise relative error
bound for each value. So we devise a method to compare
our point-wise relative error bounded TEZIP to other lossy
compressors with an equivalent amount of errors. This method
includes three steps: (1) We run ZFP with a certain absolute
error-bound. (2) Then, we measure the maximum of point-wise
errors for the decoded data; (3) Finally, we use the maximum
error as the error bound in TEZIP to evaluate its compression
ratio for each dataset.

With this method, we configure SZ and TEZIP with the
same maximum point-wise relative decompression errors as
ZFP, for a fair comparison among the three. Figure 10 shows
that, for different datasets, TEZIP achieves an improvement
up to 3.3x than the second best (SZ) in terms of compression
ratio. On average, TEZIP delivers an improvement of 1.7x
compared to SZ in terms of compression ratio.

We also compare TEZIP with SZ (Best Compressor mode).
As mentioned earlier, ZFP does not have a point-wise relative
error feature which is the primary error control feature of
TEZIP. So we do not consider ZFP as a candidate for com-
paring (de)compression time. Our evaluation shows that SZ
performs better than other lossy compressors/codecs in terms
of compression ratio. Thus, we only show the (de)compression
times of SZ with TEZIP (Figure 11). Our evaluation shows
that lossy TEZIP has a compression time comparable to SZ.
But in case of decompression, SZ is much faster compared to
TEZIP. As a future study, we plan to parallelize the prediction
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§ TEZIP outperforms other lossless compressors 
for four datasets 

§ Overall, TEZIP performs 28% better than x265,
while being comparable to FFV1

SPring-8 data
SPring-8 data
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§ TEZIP’s lossy compression mode can 
set point-wise relative error-bound at 
quantization
— The error-bound is set for SZ and TEZIP 

(configurable) based on errors in ZFP 
(unconfigurable)

§ Results 
— TEZIP achieves an improvement up to 

3.3x than the second best (SZ) in terms 
of compression ratio

Lossy compression mode in TEZIP futher improves 
compression ratio under the same error-bound

Fig. 8. Compression ratio with lossless compressors.

In our evaluation, we select the lossless option of x265. All
other lossless compressors have been configured with default
settings. Figure 8 shows that TEZIP outperforms these lossless
compressors in terms of compression ratio for all our datasets.
TEZIP achieves an improvement up to 3.2⇥ in terms of
compression ratio for these datasets. On average (shown as
arithmetic mean or AMEAN in Figure 8), lossless TEZIP
delivers 2.1⇥ better compression ratio compared to the second
best lossless compressor, x265 (lossless).

These results show that Baseline depends heavily on the
entropy between consecutive frames. Varying entropy levels
lead to fluctuating compression ratios for Baseline, lower than
TEZIP on average. In contrast, TEZIP predicts frames with
high accuracy even when the entropy is high. For example,
multiple transforming objects in a frame lead to high entropy
and low compression ratios for Baseline. In TEZIP, our trained
PredNet can predict the next frames with higher accuracy,
resulting in high compression ratios.

Fig. 9. (De)compression time with lossless compressors.

We have also compared TEZIP with lossless compressors.
From our evaluation, x265 (lossless) and FFV1 performs
better than other lossless compressors in terms of compression
ratio. Thus, we only show (de)compression times of x265
and FFV1 with TEZIP (Figure 9). TEZIP outperforms other
lossless compressors for four datasets with a large number
of frames(� 800) while it performs comparably for the other
four smaller datasets. Our experiments show that, in terms
of decompression time, TEZIP is generally better than x265
for most of the datasets, while FFV1 generally outperforms
TEZIP. In terms of the overall combined time (compression

and decompression) TEZIP performs 28% better than x265,
while being comparable to FFV1.
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2) Lossy Compression: For lossy compression, we config-
ure TEZIP to handle different point-wise relative error bounds.
In our experiments we have varied the point-wise relative
error bound (↵) for different datasets based on the technique
described later in this section. We compare our lossy TEZIP
scheme with lossy compressors like SZ [13] and ZFP [26].
No comparisons are made to lossy video codecs (e.g. MPEG4,
X264) because they cannot be tuned with point-wise relative
error bounds and they are also not suitable for lossy floating-
point RGB value compression.

ZFP uses a block-based floating-point representation. In a
single block, all values are represented with respect to a single
common exponent. For a block with a wide range of values,
ZFP has no means to control the point-wise relative error
bound for each value. So we devise a method to compare
our point-wise relative error bounded TEZIP to other lossy
compressors with an equivalent amount of errors. This method
includes three steps: (1) We run ZFP with a certain absolute
error-bound. (2) Then, we measure the maximum of point-wise
errors for the decoded data; (3) Finally, we use the maximum
error as the error bound in TEZIP to evaluate its compression
ratio for each dataset.

With this method, we configure SZ and TEZIP with the
same maximum point-wise relative decompression errors as
ZFP, for a fair comparison among the three. Figure 10 shows
that, for different datasets, TEZIP achieves an improvement
up to 3.3x than the second best (SZ) in terms of compression
ratio. On average, TEZIP delivers an improvement of 1.7x
compared to SZ in terms of compression ratio.

We also compare TEZIP with SZ (Best Compressor mode).
As mentioned earlier, ZFP does not have a point-wise relative
error feature which is the primary error control feature of
TEZIP. So we do not consider ZFP as a candidate for com-
paring (de)compression time. Our evaluation shows that SZ
performs better than other lossy compressors/codecs in terms
of compression ratio. Thus, we only show the (de)compression
times of SZ with TEZIP (Figure 11). Our evaluation shows
that lossy TEZIP has a compression time comparable to SZ.
But in case of decompression, SZ is much faster compared to
TEZIP. As a future study, we plan to parallelize the prediction
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SPring-8 data
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TEZIP is open-source software and future works
§ We open-sourced TEZIP and released documents

§ Future works
— Improvement in quantization
— Improvement in Prediction
• TEZIP relies on a generic predictor (PreNet)
• The compression ratio will be futhrer imporved with domain-specific 

predictors

Readthedocs:
https://tezip.readthedocs.io/en/latest/?badge=latest

Github: 
https://github.com/kento/TEZip

Japanese

English

in a second) and compression ratio (the ratio of the data
size before and after compression). Otherwise, complicated
(de)compression can achieve higher compression ratio with
lower speed while simple (de)compression may achieve lower
compression ratio with higher speed. Time evolutionary data
offer additional opportunities to apply predictive DNN tech-
niques. However, DNN techniques can take more time than
simple algorithms such as curve fitting models. Thus, applying
DNN for effective compression (good trade-off between com-
pression ratio and (de) compression time) of time evolutionary
data remains an interesting research challenge.

In this paper, we develop an efficient (de)compression
framework called TEZIP (Time Evolutionary ZIP) that can
support dynamic lossy and lossless compression of time evolu-
tionary image frames with high compression ratio and speed.
TEZIP employs PredNet to exploit the temporal locality of
time evolutionary data, predict the next image frames and
derive the resulting differences between the predicted frame
and the actual frame as a delta frame that is much more com-
pressible. Next, we apply three encoding techniques to exploit
the spatial similarities in the delta frames, point-wise relative
error-bounded quantization, density-based spatial encoding
and entropy encoding. Finally, we apply lossless compressors
to compress these encoded frames. To pinpoint the best trade-
off between (de)compression ratio and speed, we also propose
window-based prediction algorithms. Specifically, this paper
makes the following contributions:

• A new application of neural network technologies for data
compression through an extension to the PredNet model
that exploits the temporal locality of time evolutionary
image data and supports both integer and floating-point
value prediction of real-world datasets;

• Novel encoding techniques exploiting spatial similarities,
point-wise relative error-bounded quantization, density-
based spatial encoding and entropy encoding;

• Flexible window-based prediction algorithms to find the
best trade-off between compression ratio and compression
speed while maintaining the image quality.

• An empirical evaluation showing effectiveness of TEZIP
with real-world time evolutionary data by comparing with
popular lossy and lossless compressors.

Especially, our evaluation on real-world time evolutionary
data generated from SPring-8 [21] shows that, in terms of
compression ratio, TEZIP outperforms existing lossless com-
pressors such as x265 by up to 3.2x and lossy compressors
such as SZ by up to 3.3x. To the best of our knowledge,
TEZIP is the first compressor that can accurately predict time
evolutionary data for effective data reduction and pinpoint a
good trade-off for balanced compression ratio and speed.

II. BACKGROUND

Time Evolutionary Data: Synchrotron radiation facilities
are used to elucidate microscopic structures of a varieties of
materials from physical, chemical, to biological and medical
domains. With bright X-rays in the synchrotron radiation fa-
cilities , scientists can observe the evolution of the structure in

time. Such capabilities shed light on the origin of various phe-
nomena such as the biological function of proteins, the causes
of battery deterioration, etc. Along with the improvement on
X-ray sources, X-ray imaging detector technologies are rapidly
developing. For example, a large synchrotron radiation facility
(SPring-8) with about 60 beamlines is planning to upgrade
these beamlines with the next generation detector (CITIUS).
In 2025, it is projected, that a single beamline will generate
1.3 Exabytes of data per year in raw format [21].
Predictive Coding Network (PredNet): To achieve fast
transfer of compressed data in synchrotron radiation and
similar facilities, effective prediction is important. For accurate
prediction, we use a deep convolutional recurrent neural net-
work which can exploit a key feature of time evolutionary
data which is the similarity between consecutive images.
The changes observed between consecutive time evolutionary
images are mostly rule-based changes, e.g., certain rules from
physical systems. PredNet (Predictive coding NETwork) is
such a deep convolutional recurrent neural network. PredNet
is a self-supervised neural network model designed to learn
predictive coding of video frames. PredNet can learn represen-
tations that are relatively tolerant to object transformations.
It can also efficiently decode latent object parameters (e.g.
pose) and identify objects with few training frames which
makes it a suitable candidate for our purpose. Given one
RGB image frame from time evolutionary dataset, the model
trained by PredNet can predict the next RGB image frame
for the inference phase. PredNet accepts both floating-point
and integer values for RGB values and predicts the next RGB
image in floating-point. For the training phase, PredNet is
designed to receive RGB values as the training data, and then
produce a trained model that can learn the hidden trends of the
pixel movement and predict future frames from base frames.
We leverage this prediction engine of PredNet for effective
compression of time evolutionary data.

III. TEZIP: (DE)COMPRESSION OF TIME EVOLUTIONARY
IMAGE FRAMES

Time 
evolutionary 
image frames

Time evolutionary data
(Training data)

B0

B0

Original frames (or decompressed image frames)

Predicted frames

Delta frames

Compressed
frames

B1 B2 Bn

D1 D2 Dn

P1 P2 Pn

C1 C2 Cn

2
3 3 3

Trained model

4 4 45 6 6 6

7
8 8 8

9

1

: Model training

: Compression workflow

: Decompression workflow

Fig. 1. Workflows of TEZIP (de)compression

We explain how to compress time evolutionary image
frames with high ratio in this section and elaborate how to
improve compression speed in Section IV.

More precisely, PredNet is a self-supervised neural network such that the
loss function of the (i + 1)th predicted frame from the ith frame uses the
actual (i+ 1)th frame as its supervisory image frame.

��

Generic predictor 
(PredNet)

Domain-specific 
predictor

This project is seeking for a Postdoc or a Researcher !
https://www.hpbd.r-ccs.riken.jp/recruiting/

https://www.hpbd.r-ccs.riken.jp/recruiting/
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l Once we move data to computers, the users will analyze the data and can use AI for the feature 
detection, Image recognition, segmentation etc.

l We must provide fast and scalable AI training environments on Fugaku
l GPU has become a popular platform for executing DL, but we revisit the idea of running DL on 

CPUs in Fugaku

Supercomputer Fugaku & Deep learning

To make use of Fugaku/A64FX performance, tuning AI software stack is indispensable

Big data
（After transfer）

Automatic
data transfer

layer

Data 
(De)compression

layer

Bigdata
(Before transfer）

(1) Data pre-processing

gfpcopy client
(auto-send)

gfpcopy client 
(auto-recv)

Decompression

SPring-8
temp. storage HPCI StorageData conversion/pre-

processing edge server

Compression

SPring-8/SACLA

Supercomputer Fugaku

AI/BD frameworks

(2)Data compression/transfer (3)Data processing

(4) Data sharing and usability

R-CCS
Storage

13 © 2019 FUJITSU

A64FX: Summary
n Arm SVE, high performance and high efficiency

n DP performance   2.7+ TFLOPS,  >90%@DGEMM

n Memory BW      1024 GB/s,    >80%@STREAM Triad

12x compute cores
1x assistant core

A64FX
ISA (Base, extension) Armv8.2-A, SVE
Process technology 7 nm
Peak DP performance 2.7+ TFLOPS
SIMD width 512-bit
# of cores 48 + 4
Memory capacity 32 GiB (HBM2 x4)
Memory peak bandwidth 1024 GB/s
PCIe Gen3 16 lanes
High speed interconnect TofuD integrated

PCle
Controller

Tofu
Interface
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C

C
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HBM
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HBM
2

HBM
2

HBM
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CMG CMG

CMG CMG

CMG�Core Memory Group   NOC�Network on Chip

SCAsia2019, March 12

Toshiyuki Shimizu, “Post-K Supercomputer with Fujitsu's Ori
ginal CPU, A64FX Powered by Arm ISA”, Nov. 15th, 2018

à High perf. FP16/INT8
à High bw mem (1024 GB/sec)
à Scalable TofuD net.
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l Objective: Fast and scalable deep learning on Fugaku/A64FX
l Conduct porting, performance analysis and tuning
l Deploy large-scale deep learning environment
l Enhance the usability for production use in Fugaku

l MOU for RIKEN/Fujitsu collaboration on AI framework development in Fugaku (Nov. 25, 2019)

l RIKEN R-CCS internal teams are working together
l Under collaboration with Industry & academia
l Porting, tracing DL, performance analysis, tuning, merge to upstream  

DL4Fugaku: Deep learning for Fugaku

RIKEN R-CCS

Operation team

Research teams
Large-scale parallel numerical computing 

technology research team

Application tuning development unit
à Software Development Technology Unit

High performance AI system research team

High performance big data research team

Collaborators

ARM

Cybozu

AIST

Fujitsu
Laboratories

Fujitsu limited

Linaro

Tokyo Tech

(alphabetical order)

※ Some of software introduced in the rest of DL4Fugaku project slides is under development. 
Experimental results will be changed in future in the course of tuning 

https://www.hpbd.r-ccs.riken.jp/hpbd/en/dl4fugaku-project/

https://www.hpbd.r-ccs.riken.jp/hpbd/en/dl4fugaku-project/


Copyright 2021 FUJITSU LIMITED
23

DL4Fugaku Project Menbers

Framework & oneDNN
porting & tuning

Naoki Shinjo,  Akira Asato, 
Atsushi Ike, Koutarou Okazaki,
Yoshihiko Oguchi, 
Masahiro Doteguchi, 
Jin Takahashi, Kazutoshi Akao, 
Masaya Kato, Takashi Sawada,
Naoto Fukumoto,
Kentaro Kawakami,
Naoki Sueyasu, Kouji Kurihara, 
Masafumi Yamazaki,
Takumi Honda

Tuning for Fugaku
Satoshi Matsuoka, High Performance Artificial Intelligence 

Systems Research Team Leader

Kento Sato, High Performance Big Data Research Team Leader

Kazuo Minami, Application Tuning Development Unit Leader

Akiyoshi Kuroda, Application Tuning Development Unit 

Fugaku AI 
project

Shigeo Mitsunari (Xbyak)Technical
support
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Porting and Tuning approach
l Deep learning software stack

l Deep learning frameworks reply on low-level numerical libraries optimized for specific 

hardware

l cuDNN for NVIDIA GPU, OneDNN for Intel CPU, ??? for A64FX

l Approach
l We decided to tune OneDNN for Fugakuʼs A64FX CPUs (OneDNN_aarch64) instead of 

full scratch development

l Current status
l The source codes are in a github repository

l https://github.com/fujitsu/dnnl_aarch64
l We also contribute to upstream of OneDNN repo NVIDIA

GPU

DL frameworks

（TensorFlow, PyTorch, Chainer etc.）

cuDNN

Intel CPU A64FX

OneDNN
OneDNN
_aarch64

Hardware

Low-level libraries

Frameworks

Slide courtesy of  Jin Takahashi, Fujitsu laboratory ltd. with translation and modifications

Intel Math Kernel Library for Deep Neural Networks (Intel MKL-DNN)
à Deep Neural Network Library (DNNL) 
à oneAPI Deep Neural Network Library (oneDNN)

https://github.com/fujitsu/dnnl_aarch64
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Original oneDNN@Intel logic

Copyright 2021 FUJITSU LIMITED
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oneDNN : Low-level library for deep learning

PyTorch
or

TensorFlow

Framework

For x64

And perform the 
graph processing 

with data

Xbyak

JIT code generator 
Function Call
to make JIT code

and to execute JIT build

& execute

Low-Level Library 
for Deep learning

oneDNN

machine 

code sequences

MKL / BLAS
execute

Function Call
to execute BLAS

Execute using C++ implemented function

Priority 1. JIT code generator for a particular convolution calculation

2. JIT code generator for a general convolution calculation

3. Calculation code with BLAS

4. Calculation cade using C implemented function

High

Define Graphs with 
- the shapes of 

input/output data

- operation parameters

Slides: Masafumi Yamazaki (Fujitsu Ltd), “Deep learning on Fugaku”, MUG: MACC User Group Workshop, June 2021

1. OneDNN gets information from a 
framework about (1) Shapes of 
input/output data; (2) Operation 
parameteers of each layer

2. OneDNN calls the fastest tensor 
routine based on the information

3. The priority is
a) JIT-generated code
b) BLAS
c) C code implemented in 

OneDNN 

• The generated code is cached and reused
• The same convolution kernels are called 

many time in deep learning
• The JIT-generation overhead is negligble 

for deep learning workloads 
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§ We extended OneDNN to generate aarch64 instructions via Xbyak
oneDNN for A64FX/aarch64

Copyright 2021 FUJITSU LIMITED
21

oneDNN for aarch64

Xbyak_aarch64

PyTorch
or

TensorFlow

Framework

For A64FX

JIT code generator 

Low-Level Library 
for Deep learning

Function Call
to make JIT code
and to execute

JIT build

& execute

oneDNN

extend
for aarch64

machine 
code sequences

We extended oneDNN with JIT code for aarch64.

And perform the 
graph processing 
with data

Define Graphs with 
- the shapes of 

input/output data
- operation parameters

Slides: Masafumi Yamazaki (Fujitsu Ltd), “Deep learning on Fugaku”, MUG: MACC User Group Workshop, June 2021
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§ By using the Xbyak, XED-Translator cascade, when the instruction set is extended, 
Xbyak and XED are replaced with the updated ones, and we only need to modify the 
mapping table between intel and Arm instructions in the Translator.

Sustanable Porting Workflows

Copyright 2021 FUJITSU LIMITED
23

oneDNN translator for aarch64

Xbyak_aarch64

PyTorch
or

TensorFlow

Framework

For A64FX

machine 
code sequences

Xbyak

XEDTranslator

Xbyak translator for aarch64

output

& execute

output

disassemble

Low-Level Library 
for Deep learning

oneDNN
for aarch64

extend
for aarch64

For x64

Type of mnemonic
Operand information

translated Xbyak-assembler

Slides: Masafumi Yamazaki (Fujitsu Ltd), “Deep learning on Fugaku”, MUG: MACC User Group Workshop, June 2021
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Perfomrance Evaluation: ResNet-50 on A64FX (A single node)
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PyTorch v1.5.0 TensorFlow v2.1.0

l Environment
l HW: A64FX (2.2GHz, 48 cores, HBM2 32GB)
l SW: Fujitsu compier (fcc), Fujitsu numerical libraries (SSL-II)

Ref.) NVIDIA GPU V100: 905 ips [1]
PyTorch/ResNet-50(training)/ImageNet2012

[1] NVIDIA Data Center Deep Learning Product Performance, https://developer.nvidia.com/deep-learning-performance-training-inference 

Slide courtesy of  Jin Takahashi, Fujitsu laboratory ltd. with translation and modifications
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l MLPerf HPC (v0.7) Benchmark
l One of deep learning benchmarks in MLPerf HPC
l Repository: https://github.com/mlcommons/hpc
l Benchmarks

l CosmoFlow（宇宙科学）

- Predict cosmological parameters from N-body cosmo simulation data
- 3D CNN for regression of 4 parameters
- Training data shape is  (128, 128, 128, 4)
- Training data size is 5.1TB

l DeepCAM（気候・気象）

- Indentify extreme weather phenomena in climate simulation data
- 2D semantic segmentation with DeepLabV3+ model which predicts 3 classes per pixel 

(atomaspheric river, tropical cyclon or background)
- Training data shape is (768, 1152, 16) and labeled with 3 per-pixel classes
- Training data size is 8.8 TB

MLPerf HPC v0.7 Benchmark 

CosmoFlow DeepCAM

https://github.com/mlcommons/hpc
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Our process topology optimization enables scalable training

Copyright 2021 FUJITSU LIMITED
36

Throughput of Hybrid Parallelism

Throughput scales almost ideally for 
global batch sizes when data + model 
parallelism is used

16,384 nodes(=processes)

Batch size 4,096

4x1 partitioning
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Global batch size (= # of nodes when data parallel)

CosmoFlow throughput on Fugaku
(mini batchsize=1)

data parallel
data+model parallel(2x1)
data+model parallel(4x1) ×

=

Slides: Masafumi Yamazaki (Fujitsu Ltd), “Deep learning on Fugaku”, MUG: MACC User Group Workshop, June 2021

We achieved good scalability with a hybrid using of data&model parallel training  

4,096 models 
(data parallel)

4x1 nodes/model
(model parallel)
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l Fugaku was ranked at No 2. in MLPerf HPC ranking (Nov., 2020) even 
with “1/10 of Fugaku nodes”
l Fujitsu, AIST and RIKEN Achieve Unparalleled Speed on MLPerf HPC 

Machine Learning Processing Benchmark
l https://www.hpcwire.com/off-the-wire/fujitsu-aist-and-riken-achieve-

unparalleled-speed-on-mlperf-hpc-machine-learning-processing-benchmark/

MLPerf HPC (v0.7) ranking: CosmoFlow

MLPerf HPC v0.7結果
◼他の機関と比較し、ABCI・富岳の結果は非常に高速

Copyright 2020 Fujitsu Laboratories Ltd.

CosmoFlow DeepCam

GPUマシン CPUマシン GPUマシン
ABCI 富岳 ABCI

圧倒的な高速性を実現

20倍

14倍

6

GPU machines CPU machines

FugakuABCI

10x

14x

Submitter System Processor # Software Time [min]

Fujitsu ABCI Xeon Gold 6148
Tesla V100 GPU

1024
2048 TensorFlow 13.21

Fujitsu / 
RIKEN Fugaku A64FX 16384 TensorFlow + 

Mesh TensorFlow 30.07

https://www.hpcwire.com/off-the-wire/fujitsu-aist-and-riken-achieve-unparalleled-speed-on-mlperf-hpc-machine-learning-processing-benchmark/
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• Xbyak-T which automatically generate tuned code for aarch64 from oneDNN that is originally tuned for x86 64. 
• Highly scalable hybrid parallelism tuned for 6D mesh/torus network topology of TofuD interconnects with
a rank mapping technique for MPI_Allreduce; 
• I/O acceleration for data loading with data compression, data staging and data caching techniques; 
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Fig. 11. The scalability of hybrid parallelism on Fugaku. Each node processed
one sample per iteration.

VII. EVALUATION

A. Environment

The evaluations are conducted on Fugaku during the trial
phase. We used a programming environment of technical
computing suite TCSDS-1.2.27a, which is an early access
version, released from Fujitsu, and oneDNN 1.6.0 for aarch64
as DL library. A64FX is set to the boost mode and we evaluate
the CosmoFlow benchmark using up to 16,384 nodes. The use
of mixed precision can improve training throughput without
convergence problem, but we use only FP32 precision for the
model training because oneDNN does not originally support
mixed precision training.

B. The 16,384-node Parallelism of Three-Dimension Convo-
lutional Neural Network Training

1) Data and Model Parallel Scalability: This section dis-
cusses the scalability of data parallelism and model parallelism
on Fugaku. Fig. 11 presents training throughput of CosmoFlow
under increasing number of nodes up to 16,384 nodes to show
the scalability in hybrid model parallelism. We also compare
the hybrid model parallelism with data parallelism labeled
as w/o model parallel. As the number of nodes increases,
we increase the global mini-batch size while keeping the
mini-batch size per node. The figure reveals that data-parallel
training on Fugaku can achieve high scalability. Compared
to the training performance with 128 nodes, training with
4,096 and 8,192 nodes exhibits 30 times and 55 times higher
performance respectively.

Regardless of the number of data parallel groups, the
training throughput is also improved by model parallelization.
However, the ratio of performance improvement is not large
compared with data parallelism. For example, comparing the
training throughputs between 4 ⇥ 4 model parallel with 8 K
nodes and w/o model parallel with 512 nodes in Fig. 11, the
number of nodes increased by 16 times while performance in-
creased only by 2 times. This figure also shows that scalability
with model parallelism is virtually independent of the settings
for data parallelism.

Fig. 12. The number of epochs and relative times to solution on Fugaku with
data parallel approach

2) Whole Training Time: We measure the entire training
time of CosmoFlow with hybrid parallelism. Fig. 12 shows
the number of epochs and relative times to solution on Fugaku
with data parallel approach. The batch size is one per CPU,
so that the number of CPUs is equal to the mini-batch size.
The time to solution is estimated from training throughput
and the number of epochs to converge. It decreases to a mini-
batch size of 4,096, but hardly changes at a mini-batch size
of 8,192 because the number of epochs also doubles from a
mini-batch size of 4,096. Therefore, we adopt a mini-batch
size of 4,096 for our evaluation. CosmoFlow model is divided
by 4 ⇥ 1 by model parallelism and the model is distributed
across 16,384 nodes by data parallelism. The training time
is about 30 minutes (1,804 seconds), which is the average
time of eight measurements out of ten by excluding the
longest and shortest time. It is the average time of 8 out of
10 measurements excluding the maximum and minimum of
CosmoFlow. The average number of epochs for convergence
is 158. The breakdown of total training time is 70% for pure
training, 23% for validation, 3% for data staging, and most
of the remaining 3% is initial graph optimization. The short
staging time of 3% is realized by our optimization. This record
is submitted to MLPerf HPC v0.7, which is ranked at No.2 in
open division in November 2020. This is the fastest record of
CPU-based systems in that round.

VIII. RELATED WORK

A. Distributed training

Data parallelism is used in many distributed trainings and
has been studied extensively. For example, in ResNet-50, the
mini-batch size that can converge has increased significantly
based on improvements such as the learning rate schedule and
optimizer [19]–[21]. However, because convergence problems
caused by large mini-batch sizes still exist, there is a limit
to the number of parallel processors that can be used in data
parallelism.

Several frameworks using model parallelism have been stud-
ied to obtain greater parallelism compared to data parallelism.
MTF [17] is a hybrid parallelism framework of data and model
parallelism with TensorFlow as a back end. It introduces the
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Fig. 2. an overview of the Fugaku’s two-level storage architecture

3) Storage architecture: Fugaku adopts a two-level hierar-
chical storage architecture [13]. Fig. 2 illustrates an overview
of the storage architecture. The level-1 storage is a near-node
local storage and the level-2 storage is a global file system.

The 16 CNs constitute a group called a bunch of
blades (BoB). Adjacent CNs are connected by TofuD inter-
connects, and the 16 CNs in a BoB is structured as 2⇥ 2⇥ 4
in a, c and z axes. In each BoB, one of the 16 CNs works as
a storage I/O node (SIO) as well as a regular CN. Each SIO
has a 1.6 TB NVMe SSD. These SSDs works as the level-
1 storage. The level-1 storage provides lightweight layered
I/O-accelerator (LLIO) for the efficient utilization. The LLIO
file system is initialized and mounted by the CNs before a
submitted job starts. Once the job completes, data on LLIO
is deleted and unmounted from the CNs. Therefore, training
data must be staged in the LLIO storage whenever we run
distributed training. LLIO has three I/O modes, cache, share
and local modes. The cache mode works as file cache space
for the level-2 global file system. The existence of the level-
1 storage is agnostic to applications under the cache mode.
In the share mode, CNs allocated in the same job can share
arbitrary data through LLIO and applications running on the
CNs see the level-1 storage as a single file system integrating
the SSDs distributed across SIOs 1. The local mode provides
dedicated local storage for each CN. Although CNs in a BoB
physically share the same SSD, the namespace is isolated for
each CN.

The level-2 global storage provides six volumes of file

1As of our evaluation, the share mode was not available.

systems 2. Each file system is constructed with the Fujitsu
exabyte file system (FEFS) which is a Luster2 extended file
system. The total capacity of the level-2 global storage is
150 PB.

III. SEMI-AUTO TUNING FOR A64FX
In DL processing, tensor computations via numerical li-

braries account for most of the processing time. Therefore,
it is necessary to tune the numerical libraries for the target
architecture. Although there are optimized numerical libraries
for DL processing such as cuDNN for GPUs and oneDNN
for Intel CPUs, there is no numerical libraries optimized
for A64FX. Since oneDNN is compatible with and widely-
supported in existing DL frameworks such as TensorFlow and
PyTorch for CPU-based systems, we decided to port and tune
oneDNN for the A64FX architecture.

A. Xbyak-T: Xbyak translator for aarch64
One of the key technologies in oneDNN is use of a just-in-

time (JIT) assembler called Xbyak [14]. By using Xbyak, we
can write assembler programs in C++ and generates execution
code. However, original Xbyak is developed to generate exe-
cution code for the x86 64 instruction set but does not have a
function to generate the one for A64FX. Therefore, we need
to develop a code generator on Xbyak for A64FX.

Fig. 3. Diagram of the process for converting an x86 64 machine instruction
sequence into an Armv8-A + SVE machine instruction sequence.

When developing the code generator, we need to understand
a map from Intel CPU instructions to Armv8-A instructions
and then rewrite oneDNN to call the corresponding Armv8-
A instructions. Because there are a significant number of
instructions to be translated, we develop Xbyak-T which can
automatically generate executable code for Armv8-A without
manually rewriting source code for Xbyak. Fig. 3 illustrates
the workflow of code generation when using Xbyak-T: (i)
First, Xbyak-T uses Xbyak to generate x86 64 machine code;
(ii) Then, Xbyak-T disassemble the machine code and ex-
tract information for mnemonics and operations; (iii) Finally,
Xbyak-T calls a Xbyak aarch64 function to generate the
Armv8-A + SVE ISA machine code instructions based on the
extracted information.

Xbyak aarch64 is a JIT assembler that allows A64FX
mnemonics to be assembled into machine code at runtime.
Therefore, Xbyak aarch64 can enable us to generate optimal

2As of our evaluation, four volumes were available.
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• Summarize results across different organizations from the MLPerf HPC submission round in 2020 
• These results feature measurements from leading supercomputing platforms around the world, innovations in 

scalable model-and-data-parallel training and learning algorithms, and the largest scale MLPerf submission to 
date
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TABLE III
HPC SYSTEM DETAILS

System #Nodes Processors (per node) Accelerators
(per node)

Memory (per
node)

Node-local storage
(per node)

Interconnect topology and bandwidth

Piz Daint [39] 5,704 1x Intel Xeon E5-2690 v3 1x NVIDIA
P100 (16 GB)

64 GB N/A Cray Aries (Dragonfly), 9.7 GB/s intern-
ode bi-directional

ABCI [40] 1,088 2x Intel Xeon Gold 6148 4x NVIDIA
V100 (16 GB)

384 GB 1600 GB (SSD +
NVMe)

InfiniBand EDR (100Gbps) ×2, full-
bisection bandwidth in the same rack
(34 compute nodes)

Cori-KNL [41] 9,688 1x Intel Xeon Phi 7250 N/A 96 GB DDR4
+ 16 GB MC-
DRAM

N/A Cray Aries (Dragonfly), ¿45 TB/s global
peak bisection bandwidth

Cori-GPU [42] 18 2x Intel Xeon Gold 6148 8x NVIDIA
V100 (16 GB)

384 GB DDR4 930 GB (NVMe) 4 dual-port Mellanox MT27800
ConnectX-5 EDR InfiniBand network
(Fat Tree)

HAL [43] 16 2x IBM POWER 9 model 2.2 4x NVIDIA
V100 (16 GB)

256 GB DDR4 N/A 2-Port EDR (Single Level) IB
ConnectX-5 Adapter, 100 Gb/s

Frontera-RTX
[44]

90 2x Intel Xeon E5-2620 v4 4x NVIDIA
Quadro RTX
5000 (16 GB)

128 GB DDR4 240 GB (SSD) FDR InfiniBand MT27500 ConnectX-3
Adapter (Fat Tree), 56 Gb/s

Fugaku [45] 158,976 1x Fujitsu A64FX N/A 32 GB HBM2 1.6 TB (NVMe
SSD, shared among
16 compute nodes)

TofuD, (6D Mesh/Torus Network),
68GB/s x2 (in/out)

ThetaGPU [46] * 24 2x AMD EPYC 7742 8x NVIDIA
A100 (40 GB)

1 TB DDR4 15TB SSD, 3.84TB
NVMe

20 Mellanox QM9700 HDR200 40-port
switches (Fat Tree), 25 GB/s node in-
jection bandwidth

Summit [29] * 4,600 2x IBM 3.07 GHz POWER9 6x NVIDIA
V100 (16 GB)

512 GB DDR4 1.6TB (NVMe
SSD)

dual-rail EDR InfiniBand network (Fat
Tree), 23GB/s node injection bandwidth

* Measured performance metrics but did not submit for v0.7 submissions

TABLE IV
PERFORMANCE METRICS (TIME TO SOLUTION IN MINUTES) FROM SUBMISSIONS IN CLOSED AND OPEN DIVISIONS

Division System Submission Software #Processors #Accelerators Parallelism† CosmoFlow DeepCAM

Closed Piz Daint Piz-Daint-128 TensorFlow 2.2.0 128 128 2 s/1 GPU 461.01 -
Piz Daint Piz-Daint-256 TensorFlow 2.2.0 256 256 2 s/1 GPU 327.01 -
ABCI ABCI-1024 PyTorch 1.6.0 512 1,024 2 s/1 GPU - 11.71
ABCI ABCI-512 TensorFlow 2.2.0 256 512 1 s/1 GPU 34.42 -
Fugaku Fugaku-512 TensorFlow 2.2.0 +

Mesh TensorFlow
512 0 1 s/1 CPU 268.77 -

Fugaku Fugaku-8192 TensorFlow 2.2.0 +
Mesh TensorFlow

8,192 0 1 s/16 CPUs 101.49 -

Cori-GPU Cori-GPU-64 PyTorch 1.6.0 16 64 2 s/1 GPU - 139.29
Cori-GPU Cori-GPU-64 TensorFlow 1.15.0 16 64 1 s/1 GPU 364.73 -
Cori-KNL Cori-KNL-512 TensorFlow 1.15.2 512 0 1 s/1 CPU 536.06 -
HAL HAL-64 TensorFlow 1.15.0 32 64 1 s/1 GPU 265.59 -
Frontera-RTX Frontera-RTX-64 TensorFlow 1.15.2 32 64 1 s/1 GPU 602.23 -

Open ABCI ?ABCI-1024 PyTorch 1.6.0 512 1,024 2 s/1 GPU - 10.49
ABCI ?ABCI-2048 TensorFlow 2.2.0 1,024 2,048 1 s/1 GPU 13.21 -
Fugaku ?Fugaku-16384 TensorFlow 2.2.0 +

Mesh TensorFlow
16,384 0 1 s/4 CPUs 30.07 -

Cori-KNL ?Cori-KNL-1024 TensorFlow 1.15.2 1,024 0 1 s/1 CPU 419.69 -
† Data-parallel granularity of train step: # samples (s) processed by number of compute units forming a data-parallel unit in each train step. E.g. Piz-Daint-128
processes 2 samples (”local batch size”) on each GPU (pure data-parallelism, batch size 128⇥ 2 = 256), whereas Fugaku-8192 processes 1 sample in each
group of 16 CPUs (through model-parallelism within this group, data-parallelism across these groups of which there are 8192/16 = 512 = batch size).

Fig. 1. Relative breakdown of time to train normalized to range [0-1], into
staging (green), evaluation (orange) and training (blue). Lower three entries
on y-axis are for DeepCAM, rest are for CosmoFlow.

staging is handled more than 5⇥ faster (in absolute time) for

TABLE V
DATA STAGING TIME

Benchmark Submission Staging time
(minutes)

Tstaging

Tepoch

CosmoFlow Cori-GPU-64 16.49± 0.61 2.55
ABCI-512 0.76± 0.004 2.27

?ABCI-2048 0.20± 0.004 1.56
Fugaku-512 1.55± 0.11 0.64
Fugaku-8192 3.77± 0.51 3.59

?Fugaku-16384 0.88± 0.08 4.93

DeepCAM ABCI-1024 2.20± 0.01 5.55
?ABCI-1024 1.96± 0.08 5.45
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TABLE VII
WORKLOAD CHARACTERIZATION: MEMORY BANDWIDTH (SINGLE CPU/GPU), NETWORK AND PER-WORKER I/O BANDWIDTH MEASUREMENTS

Benchmark System Memory Tool Memory BW
(GB/sec)

Network Tool # units Network BW
(GB/sec)

Size
(MB)

I/O Tool I/O BW
(GB/sec)

CosmoFlow ABCI† Nvprof 335.4 Horovod TL 512 GPUs 3.41 19.97 Nvprof 1.65
Fugaku† Perf 110.8 Mpitrace 512 CPUs 0.75 21.71 Timer-based 2.57
Piz Daint Nvprof - Horovod TL 256 GPUs 1.86 2.21 Darshan 0.51
Summit Nsight 233.1 Horovod TL 510 GPUs 2.24 22.0 Darshan 1.46
ThetaGPU Nsight 194.5 Horovod TL 128 GPUs 1.95 15.20 Darshan 1.98

DeepCAM ABCI Nvprof 153.1 Timer-based 512 GPUs 3.73 37.77 Darshan 2.36
Summit Nsight 254.7 Timer-based 510 GPUs 4.50 225.0

† mixed-precision used on ABCI (memory bandwidth with FP32-training: 427.1 GB/sec), no model-parallelism used on Fugaku measurements

performing spatial partitioning in the Conv3d layer. Lastly, we
observe that the small message size for Piz Daint is a direct
consequence of the fine-grained communication optimization
described in section IV-B4.

C. I/O Bandwidth
As the MLPerf HPC benchmarks have massive input data

sets, it is important to understand the I/O performance. Table
VII shows the average I/O bandwidth per worker on different
systems. We used Darshan [55] to get the average I/O
bandwidth that captures all I/O-related activity, such as types
and number of files and aggregate performance combined
with shared and unique files worked by all ranks on cer-
tain systems. On ABCI, Darshan cannot measure the I/O
volume accurately since the implementation of CosmoFlow
used NVIDIA DALI which partly performs mmap-based I/O.
Hence, we used Nvprof to measure the time of the kernel
(TFRecordReader) that is performing I/O to calculate the
average I/O bandwidth. On Fugaku, we insert timers before
and after the data loads, and calculated from the elapsed time
and the amount of data.

Observations: From Table VII, it can be observed that the
measured I/O bandwidth is similar for systems with on-node
storage§§ and we can expect that it is high enough to hide I/O
behind computation. For example, for DeepCAM on ABCI,
I/O bandwidth is 2.36 GB/s per process, using 256 processes
with a full training dataset consisting of 7.7 TB. In this case,
estimated I/O time per epoch is 7,700 GB / 256 processes /
2.36 GB/s = 12.8 seconds, while measured average run time
per epoch that includes the I/O time is 99.6 seconds.

VI. KEY INSIGHTS AND CONCLUSION

To summarize, we presented MLPerf HPC, a benchmark
suite aimed at representative scientific machine learning ap-
plications with two applications, CosmoFlow and DeepCAM.
We presented the results of initial submissions from lead-
ership supercomputers and developed a framework for the
systematic analysis of time to solution in terms of different
components from data staging, algorithmic convergence and
system compute throughput. This serves the critical need
in the HPC community to understand large-scale scientific
ML workloads from a holistic perspective. Furthermore, we

§§This excludes Piz Daint (cf. section IV-B4) as well as Frontera-RTX
with 64 GPUs in the submission due to insufficient on-node SSD capacity.

introduced a set of techniques for workload characterization
in terms of I/O, memory and network performance metrics
to enable the parameterization of extended roofline models
and, thereby, relate MLPerf HPC application performance to
hardware capabilities in future rounds.

The key insights from this round are:

• Data staging adds a highly variable overhead across ap-
plications (< 1% to 20% of time-to-train) that depends
on both model and dataset characteristics. Where effective,
compression and archiving of multiple files together should
be done, especially on smaller systems, where convergence
in general is achieved in fewer epochs.

• Accelerated storage solutions like on-node SSDs are critical
for I/O-performance with large datasets. The results for
CosmoFlow showed a narrow range of scale where GPU-
based systems operated most efficiently by being able to
fit the dataset in RAM and not yet experienced prohibitive
overhead from epoch scaling. If RAM capacity is insuf-
ficient, selectively caching the evaluation dataset in RAM
should be attempted and performance can be further en-
hanced by improving data loader bandwidth and restricting
data shuffling to intra-node (DeepCAM).

• Mixed-precision training and increasing the validation batch
size significantly increase compute performance

• Efficient scheduling of communication is crucial for both
data- and model-parallelism - while fine-grained communi-
cation is required in some data-parallel frameworks, model-
parallel scalability heavily depends on overlapping halo
exchanges with local layer-wise computations.

• Scaling to large batch sizes is challenging, requiring model-
specific techniques such as special learning rate schedules,
data augmentation and disabling dropout-layers that can
exhibit a complicated interplay with convergence. This re-
inforces the need for efficient strong scaling methods, such
as the hybrid model-and-data parallelism on Fugaku.

Future Work: In future releases of the benchmark suite, we
aim to add new benchmarks for greater diversity and coverage
of scientific ML workloads, including state-of-art models such
as transformers and graph neural networks, as well as consider
applications from emerging focus areas such as AI-driven
simulations. We also plan to expand the set of collected metrics
to enhance performance models and, thus, increase utility and
relevance to HPC users.
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TABLE III
HPC SYSTEM DETAILS

System #Nodes Processors (per node) Accelerators
(per node)

Memory (per
node)

Node-local storage
(per node)

Interconnect topology and bandwidth

Piz Daint [39] 5,704 1x Intel Xeon E5-2690 v3 1x NVIDIA
P100 (16 GB)

64 GB N/A Cray Aries (Dragonfly), 9.7 GB/s intern-
ode bi-directional

ABCI [40] 1,088 2x Intel Xeon Gold 6148 4x NVIDIA
V100 (16 GB)

384 GB 1600 GB (SSD +
NVMe)

InfiniBand EDR (100Gbps) ×2, full-
bisection bandwidth in the same rack
(34 compute nodes)

Cori-KNL [41] 9,688 1x Intel Xeon Phi 7250 N/A 96 GB DDR4
+ 16 GB MC-
DRAM

N/A Cray Aries (Dragonfly), ¿45 TB/s global
peak bisection bandwidth

Cori-GPU [42] 18 2x Intel Xeon Gold 6148 8x NVIDIA
V100 (16 GB)

384 GB DDR4 930 GB (NVMe) 4 dual-port Mellanox MT27800
ConnectX-5 EDR InfiniBand network
(Fat Tree)

HAL [43] 16 2x IBM POWER 9 model 2.2 4x NVIDIA
V100 (16 GB)

256 GB DDR4 N/A 2-Port EDR (Single Level) IB
ConnectX-5 Adapter, 100 Gb/s

Frontera-RTX
[44]

90 2x Intel Xeon E5-2620 v4 4x NVIDIA
Quadro RTX
5000 (16 GB)

128 GB DDR4 240 GB (SSD) FDR InfiniBand MT27500 ConnectX-3
Adapter (Fat Tree), 56 Gb/s

Fugaku [45] 158,976 1x Fujitsu A64FX N/A 32 GB HBM2 1.6 TB (NVMe
SSD, shared among
16 compute nodes)

TofuD, (6D Mesh/Torus Network),
68GB/s x2 (in/out)

ThetaGPU [46] * 24 2x AMD EPYC 7742 8x NVIDIA
A100 (40 GB)

1 TB DDR4 15TB SSD, 3.84TB
NVMe

20 Mellanox QM9700 HDR200 40-port
switches (Fat Tree), 25 GB/s node in-
jection bandwidth

Summit [29] * 4,600 2x IBM 3.07 GHz POWER9 6x NVIDIA
V100 (16 GB)

512 GB DDR4 1.6TB (NVMe
SSD)

dual-rail EDR InfiniBand network (Fat
Tree), 23GB/s node injection bandwidth

* Measured performance metrics but did not submit for v0.7 submissions

TABLE IV
PERFORMANCE METRICS (TIME TO SOLUTION IN MINUTES) FROM SUBMISSIONS IN CLOSED AND OPEN DIVISIONS

Division System Submission Software #Processors #Accelerators Parallelism† CosmoFlow DeepCAM

Closed Piz Daint Piz-Daint-128 TensorFlow 2.2.0 128 128 2 s/1 GPU 461.01 -
Piz Daint Piz-Daint-256 TensorFlow 2.2.0 256 256 2 s/1 GPU 327.01 -
ABCI ABCI-1024 PyTorch 1.6.0 512 1,024 2 s/1 GPU - 11.71
ABCI ABCI-512 TensorFlow 2.2.0 256 512 1 s/1 GPU 34.42 -
Fugaku Fugaku-512 TensorFlow 2.2.0 +

Mesh TensorFlow
512 0 1 s/1 CPU 268.77 -

Fugaku Fugaku-8192 TensorFlow 2.2.0 +
Mesh TensorFlow

8,192 0 1 s/16 CPUs 101.49 -

Cori-GPU Cori-GPU-64 PyTorch 1.6.0 16 64 2 s/1 GPU - 139.29
Cori-GPU Cori-GPU-64 TensorFlow 1.15.0 16 64 1 s/1 GPU 364.73 -
Cori-KNL Cori-KNL-512 TensorFlow 1.15.2 512 0 1 s/1 CPU 536.06 -
HAL HAL-64 TensorFlow 1.15.0 32 64 1 s/1 GPU 265.59 -
Frontera-RTX Frontera-RTX-64 TensorFlow 1.15.2 32 64 1 s/1 GPU 602.23 -

Open ABCI ?ABCI-1024 PyTorch 1.6.0 512 1,024 2 s/1 GPU - 10.49
ABCI ?ABCI-2048 TensorFlow 2.2.0 1,024 2,048 1 s/1 GPU 13.21 -
Fugaku ?Fugaku-16384 TensorFlow 2.2.0 +

Mesh TensorFlow
16,384 0 1 s/4 CPUs 30.07 -

Cori-KNL ?Cori-KNL-1024 TensorFlow 1.15.2 1,024 0 1 s/1 CPU 419.69 -
† Data-parallel granularity of train step: # samples (s) processed by number of compute units forming a data-parallel unit in each train step. E.g. Piz-Daint-128
processes 2 samples (”local batch size”) on each GPU (pure data-parallelism, batch size 128⇥ 2 = 256), whereas Fugaku-8192 processes 1 sample in each
group of 16 CPUs (through model-parallelism within this group, data-parallelism across these groups of which there are 8192/16 = 512 = batch size).

Fig. 1. Relative breakdown of time to train normalized to range [0-1], into
staging (green), evaluation (orange) and training (blue). Lower three entries
on y-axis are for DeepCAM, rest are for CosmoFlow.

staging is handled more than 5⇥ faster (in absolute time) for

TABLE V
DATA STAGING TIME

Benchmark Submission Staging time
(minutes)

Tstaging

Tepoch

CosmoFlow Cori-GPU-64 16.49± 0.61 2.55
ABCI-512 0.76± 0.004 2.27

?ABCI-2048 0.20± 0.004 1.56
Fugaku-512 1.55± 0.11 0.64
Fugaku-8192 3.77± 0.51 3.59

?Fugaku-16384 0.88± 0.08 4.93

DeepCAM ABCI-1024 2.20± 0.01 5.55
?ABCI-1024 1.96± 0.08 5.45
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TABLE III
HPC SYSTEM DETAILS

System #Nodes Processors (per node) Accelerators
(per node)

Memory (per
node)

Node-local storage
(per node)

Interconnect topology and bandwidth
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P100 (16 GB)

64 GB N/A Cray Aries (Dragonfly), 9.7 GB/s intern-
ode bi-directional

ABCI [40] 1,088 2x Intel Xeon Gold 6148 4x NVIDIA
V100 (16 GB)

384 GB 1600 GB (SSD +
NVMe)

InfiniBand EDR (100Gbps) ×2, full-
bisection bandwidth in the same rack
(34 compute nodes)

Cori-KNL [41] 9,688 1x Intel Xeon Phi 7250 N/A 96 GB DDR4
+ 16 GB MC-
DRAM

N/A Cray Aries (Dragonfly), ¿45 TB/s global
peak bisection bandwidth

Cori-GPU [42] 18 2x Intel Xeon Gold 6148 8x NVIDIA
V100 (16 GB)

384 GB DDR4 930 GB (NVMe) 4 dual-port Mellanox MT27800
ConnectX-5 EDR InfiniBand network
(Fat Tree)

HAL [43] 16 2x IBM POWER 9 model 2.2 4x NVIDIA
V100 (16 GB)

256 GB DDR4 N/A 2-Port EDR (Single Level) IB
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Frontera-RTX
[44]

90 2x Intel Xeon E5-2620 v4 4x NVIDIA
Quadro RTX
5000 (16 GB)

128 GB DDR4 240 GB (SSD) FDR InfiniBand MT27500 ConnectX-3
Adapter (Fat Tree), 56 Gb/s

Fugaku [45] 158,976 1x Fujitsu A64FX N/A 32 GB HBM2 1.6 TB (NVMe
SSD, shared among
16 compute nodes)

TofuD, (6D Mesh/Torus Network),
68GB/s x2 (in/out)

ThetaGPU [46] * 24 2x AMD EPYC 7742 8x NVIDIA
A100 (40 GB)

1 TB DDR4 15TB SSD, 3.84TB
NVMe

20 Mellanox QM9700 HDR200 40-port
switches (Fat Tree), 25 GB/s node in-
jection bandwidth

Summit [29] * 4,600 2x IBM 3.07 GHz POWER9 6x NVIDIA
V100 (16 GB)

512 GB DDR4 1.6TB (NVMe
SSD)

dual-rail EDR InfiniBand network (Fat
Tree), 23GB/s node injection bandwidth

* Measured performance metrics but did not submit for v0.7 submissions

TABLE IV
PERFORMANCE METRICS (TIME TO SOLUTION IN MINUTES) FROM SUBMISSIONS IN CLOSED AND OPEN DIVISIONS

Division System Submission Software #Processors #Accelerators Parallelism† CosmoFlow DeepCAM
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Piz Daint Piz-Daint-256 TensorFlow 2.2.0 256 256 2 s/1 GPU 327.01 -
ABCI ABCI-1024 PyTorch 1.6.0 512 1,024 2 s/1 GPU - 11.71
ABCI ABCI-512 TensorFlow 2.2.0 256 512 1 s/1 GPU 34.42 -
Fugaku Fugaku-512 TensorFlow 2.2.0 +

Mesh TensorFlow
512 0 1 s/1 CPU 268.77 -

Fugaku Fugaku-8192 TensorFlow 2.2.0 +
Mesh TensorFlow

8,192 0 1 s/16 CPUs 101.49 -

Cori-GPU Cori-GPU-64 PyTorch 1.6.0 16 64 2 s/1 GPU - 139.29
Cori-GPU Cori-GPU-64 TensorFlow 1.15.0 16 64 1 s/1 GPU 364.73 -
Cori-KNL Cori-KNL-512 TensorFlow 1.15.2 512 0 1 s/1 CPU 536.06 -
HAL HAL-64 TensorFlow 1.15.0 32 64 1 s/1 GPU 265.59 -
Frontera-RTX Frontera-RTX-64 TensorFlow 1.15.2 32 64 1 s/1 GPU 602.23 -

Open ABCI ?ABCI-1024 PyTorch 1.6.0 512 1,024 2 s/1 GPU - 10.49
ABCI ?ABCI-2048 TensorFlow 2.2.0 1,024 2,048 1 s/1 GPU 13.21 -
Fugaku ?Fugaku-16384 TensorFlow 2.2.0 +

Mesh TensorFlow
16,384 0 1 s/4 CPUs 30.07 -

Cori-KNL ?Cori-KNL-1024 TensorFlow 1.15.2 1,024 0 1 s/1 CPU 419.69 -
† Data-parallel granularity of train step: # samples (s) processed by number of compute units forming a data-parallel unit in each train step. E.g. Piz-Daint-128
processes 2 samples (”local batch size”) on each GPU (pure data-parallelism, batch size 128⇥ 2 = 256), whereas Fugaku-8192 processes 1 sample in each
group of 16 CPUs (through model-parallelism within this group, data-parallelism across these groups of which there are 8192/16 = 512 = batch size).

Fig. 1. Relative breakdown of time to train normalized to range [0-1], into
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on y-axis are for DeepCAM, rest are for CosmoFlow.
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§ MLPerf HPC v0.7 in FY2020: Strong scaling metric
— Strong scaling metric
• Measures time to train one model on a system

— Due to the large-batch problem, 1/10 of Fugaku nodes give the best 
performance

— Benchmarks: CosmoFlow, DeepCAM

§ MLPerf HPC v1.0 in FY2021: Strong + Weak scaling metric
— v1.0 introduces a new weak scaling metric (in addition to strong scale metric)
• Time-to-train à Throghputs (models/second)

— Weak scaling metric
• Train multiple models on a system and measure # of trained models per sec
• Models are independently trainined eath other ans it is scalable
• We could use 1/2 of Fugaku nodes

— Benchmarks: CosmoFlow, DeepCAM and Catalyst
— Six metrics: {CosmoFlow, DeepCAM and Catalsyt} x {Strong, Week}
à We targeted CosmoFlow & Week scaling metric

MLPerf HPC (v1.0) introduced scalability rules

CN CN CN CN

CN CN CN CN

CN CN CN CN

CN CN CN CN

Training one model

CN CN CN CN

CN CN CN CN

CN CN CN CN

CN CN CN CN

Training multiple models
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§ Fugaku took first place in MLPerf HPC v1.0 (CosmoFlow, weak scaling metric)
— 82,944 CPUs are used (128 CPUs per model instance)
— Trained 637 models in 8.26 hours (495.6 mins)
à 1.285 modesl / min

MLPerf HPC v1.0 result (CosmoFlow & Weak scaling metric) 

Figure from Koichi Shirahata (Fujitsu Ltd) 
presentation at SC21 BoF (MLPerf HPC)

MLPerf HPC v1.0 Result (CosmoFlow)

○Fugaku took first place in 
MLPerf HPC v1.0 (CosmoFlow, 
weak scaling metric)
○82,944 CPUs are used (128 

CPUs per model instance)
○Trained 637 models in 495.6 

minutes

© 2021 Fujitsu Limited

0.680 0.729 

1.285 
models/min

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Perlmutter
(5120 GPUs,

BS 512)

NVIDIA
(4096 GPUs,

BS 128)

Fugaku
(82944 CPUs,

BS 128)

Th
ro

ug
hp

ut
 [m

od
el

s/
m

in
]

CosmoFlow: Throughput

1.76x

1

Selene

Source: https://www.fujitsu.com/global/about/resources/news/press-releases/2020/1119-02.html

12 x 54 = 
648 models



36

§ Fugaku is the only CPU-based system amoung the submitters

§ The rest of systems are NVIDIA GPU machines

All results in MLPerf HPC v1.0

Figures: https://www.hpcwire.com/2021/11/19/mlperf-issues-hpc-1-0-benchmark-results-featuring-impressive-systems-think-fugaku/
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Performance results on other neural networks

Slides: Masafumi Yamazaki (Fujitsu Ltd), “Deep learning on Fugaku”, MUG: MACC User Group Workshop, June 2021

§ With tuned oneDNN for A64FX, we achieve1.6x to 7.8x performance 
improvement

Copyright 2021 FUJITSU LIMITED
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Performance Improvement of Various 
Neural Network models with one FX700
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Supported TensorFlow and PyTorch versions on Fugaku

l Fugaku officially supports TensorFlow-2.2.0, PyTorch-1.7.0/1.6.0. These versions are 
linked to the Fujitsuʼs oneDNN library tuned for A64FX

l Location
l FEFS storage︓/home/apps/oss/... 

l Package versions

l Other: Python ver.3.8.2 + mpi4py ver.3.0.3, pandas ver.1.2.2, numpy ver.1.19.0, scipy ver.1.5.2, 
h5py ver.2.8.0, libtensorflow_cc.so ver.2.2.0, Batched BLAS ver.1.0, fapp ver.1.0.0 etc.

環境 モデル対応 提供状況

FW OneDNN Horovod ResNet50 OpenNMT ResNetX BERT Mask-
RCNN 理研様提供 Fujitsu github

公開

PT v1.5.0 v0.21.0 v0.19.0 ✔ ✔ ✔

PT v1.6.0 v1.6.0 v0.20.3 ✔ ✔ ✔ ✔ ✔

PT v1.7.0 v2.1.0 v0.20.3 ✔ ✔ ✔ ✔ － ✔

PT v1.7.0 v2.1.0L01 v0.20.3 ✔ ✔ ✔ ✔ ✔ － ✔

TF v2.1.0 v0.21.2 v0.19.5 ✔ ✔ ✔

TF v2.2.0 v2.1.0 v0.19.5 ✔ ✔ ✔ ✔ － ✔

TF v2.2.0 v2.1.0L01 v0.19.5 ✔ ✔ ✔ ✔ ✔ － ✔
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§ Data pratform is important for data-drive science 
— We launched a project to build data pre-processing/compression/analysis/utilization platform 

for RCS facilities (SPring-8, SACLA) and Fugaku
— For data compression, we introduced TEZip for fast data transfer  
• AI-driven data compression tool designed for time evolutionary data
• Compression rates are up to 15 in the lossless mode and 50 in the lossy mode in the real SPring-8 

data

§ DL4 Fugaku Project
— We extended OneDNN library for A64FX by developoing the Xbyak translator
— In MLPerf HPC v1.0 (CosmoFlow), Fugaku recieved No. 1 in the weak scaling metric 
— We also tuned many other NNs such as data classification, detection, NMT and NLP

§ Working with the operation team, we woulid like to enahcen the usability of 
Fugaku and other systems

Summary

Our team is seeking for researchers, postdocs and Ph.D. students.
If you are interested in joining our projects, pleasae feel free to contact me: kento.sato@riken.jp


