High Performance Big Data Systems for Extreme-scale Data Science on Fugaku

International Workshop on the Integration of Simulation + Data + Learning: Towards Society5.0 by h3-Open-BDEC 16:00 – 16:40, November 30th, 2021

Kento Sato, RIKEN R-CCS

The Matter of the state of the state of the state

HIGPH PERFORMANCE BIG DATA RESEARCH TEAM

1 111

Mission: Convergence of AI, Big Data and HPC

HPC for AI/BD

Research and software development for accelerating AI/Big data workloads and applications on HPC systems (i.e., large-scale systems)

AI/BD for HPC

Research and software development for accelerating HPC workloads and applications by using Big Data/AI techniques

11,

Fundamental R&D in HPC

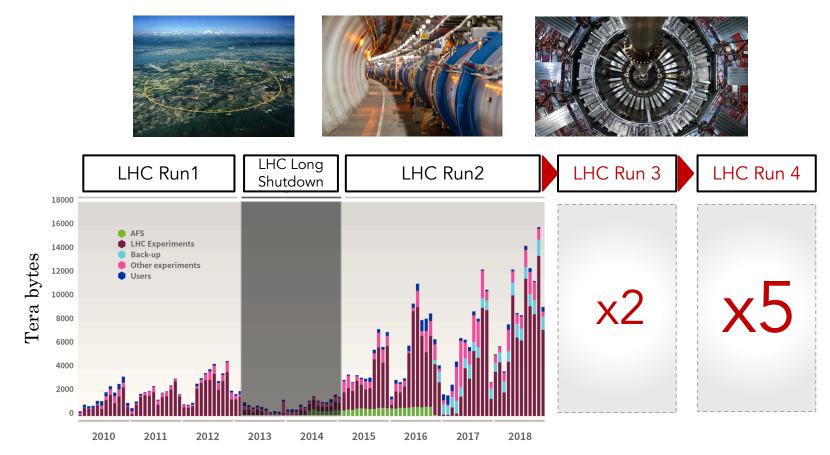
Research projects and collaborations

- Fundamental R&D in HPC
 - Reproducibility in MPI/OpenMP applications by record-and-replay techniques
 - Design space exploration for the next-gen supercomputers (Jens Domke, Matsuoka team, AIST)
 - Auto-detection of checkpoint variables (Nanchang Hangkong University, PNNL)
 - ABFT for tensor operations in deep learning framework (Nanchang Hangkong University, PNNL)
 - Failure analysis on Fugaku (Shoji, Yamamoto, Northeastern Univ.)
 - Benchmarking and Performance analysis of big data applications on NVDIMM (Andres Rubio Proano, FSU)
 - I/O optimization for 2D/3D sub-tiling of MPI-IO on a near-node local storage architecture (KTH)
- HPC for AI/BD
 - Data platform for Fugaku and RSC facilities, SPring-8 and SACLA (Matsuda, Kaneyama, Harada, Shoji +RSC)
 - DL4Fugaku: Deep learning framework tuning on Fugaku (Matsuoka team, Imamura team, Fujitsu)
 - Storage performance analysis and storage design exploration for deep learning (Takaaki Fukai)
- AI/BD for HPC
 - Big data compression with AI techniques (FSU)

Big Data Generation and Transfer

<u>Generation</u>: Scientific big data is generated every day all over the world

- LHC (Large Hadron Collider) in CERN generated about 88PB of data in 2018 [1]
 - "Data archival is expected to be two-times higher during Run 3 and five-times higher or more during Run 4 (foreseen for 2026 to 2029)."

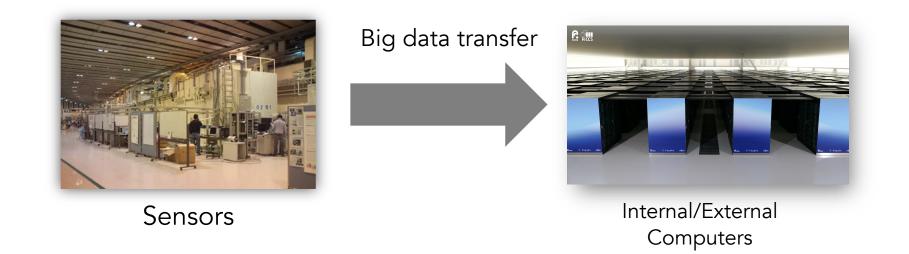


[1] Esra Ozcesmeci, "LHC: pushing computing to the limits", <u>https://home.cern/news/news/computing/lhc-pushing-computing-limits</u> March 1st, 2019

Big Data Generation and Transfer (Cont'd)

<u>**Transfer**</u>: Data transfer is an essential part of data analytics

- Generated data from sensors must be transferred to internal computers for the analysis
- In some case, the facilities needs to transfer the data to external collaborators via WAN
- e.g.) In LHC, 830 PB of data and 1.1 billion files were transferred all over the world [1]



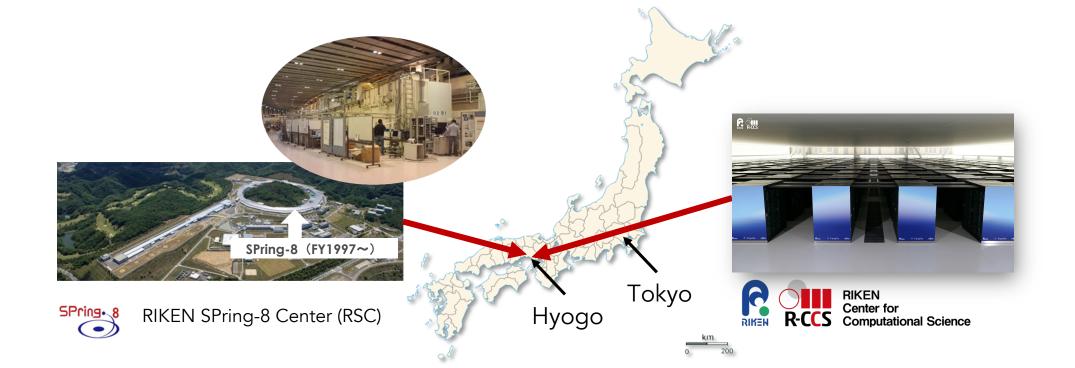
Efficient data transfer and its management is important in big data analysis

SPring-8

RIKEN has SPring-8 large synchrotron radiation facility

- Opened in 1997 in Harima, located in the same Hyogo prefecture as R-CCS
- Managed by RIKEN, with Japan synchrotron radiation research institute (JASRI)
- SPring-8 stands for Super Photon ring-8 GeV
 8 GeV (giga electron volts) is the energy of electron beam circulation in the storage ring

- Generates PB-order of big data



Research and development of an initiastic terms is the search facilities analyzing and utilizing big data in large-scale research facilities (Fusaku / Spring-8/SACLA) Project Leader: Kento Sato

[Overview]



Project team members

Members
Kento Sato, R-CCS
Fumiyoshi Shoji, R-CCS
Motohiko Matsuda, R-CCS
Kaneyama Hidetomo, R-CCS
Hiroshi Harada, R-CCS
Jorji Nonaka, R-CCS
Kentaro Sano, R-CCS
Masaaki Kondo, R-CCS
Tomohiro Ueno, R-CCS
Takaki Hatsui, RSC
Yasumasa Joti, RSC

[Objective]

- The Objective of this project is to establish a "big data infrastructure" that enables data collection, analysis, and utilization between SPring-8/SACLA and Fugaku. We are working on following sub-proejcts:
 - (1) Data pre-processing infrastructure: To efficiently store experimental data obtained from sensors, we perform data conversion and pre-processing at the hardware level using FPGA
 - (2) Data compression and transfer infrastructure: We develop data compression and transfer infrastructure
 - (3) Data analysis infrastructure: We will build an infrastructure (workflow tools and deep learning framework) to efficiently analyze the data in HPC systems
 - (4) Data utilization infrastructure: We will build a data utilization infrastructure to make use of the collected primary data and analysis results (e.g., Single sign-on authentication, GakuNin RDM etc.)

Data transfer service in SACLA

- We started data transfer service from SACLA to HPCI shared storage
 - To facilitates data analitycs in HPCI systems inlucidng Fugaku
- We are planing to expand the service to SPring-8 synchortron radiation facility and enhance the usability (Common authentication scheme, GakuNin RDM etc.)

Source (May 14, 2021): http://xfel.riken.jp/users/bml09-1.html

Data Transfer Service to HPCI Shared Storage Toward the creation of innovative achievement through SACLA

2021年5月14日	← 前の記事	↑ <u>一覧へ戻る</u>	→ 次の記事
理化学研究所			
東京大学			
HPCI共用ストレージへのデータ転送サービス開始			
-SACLA実験データの大規模解析による新たな研究成果創出に向けて-			

理化学研究所(理研)放射光科学研究センター、理研計算科学研究センター(R-CCS)および東京大学情報基盤センターは、<u>X線自由電子レーザー</u> (<u>XFEL)</u>[1]施設「<u>SACLA^[2]</u>」で得られた実験データの大規模解析のため、SACLAから<u>HPCI^[3]共用ストレージ^[3]へのデータ転送</u>サービスを5月14日より 開始しました。

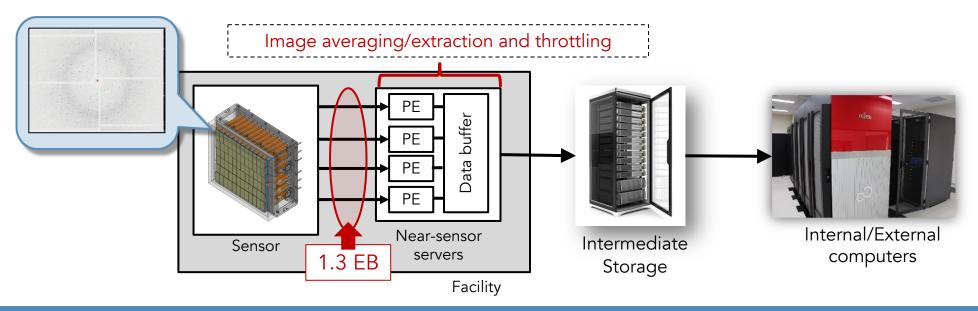
近年、SACLAで得られた大量の実験データを、外部の研究機関と迅速に共有し、高度な計算科学によって解析を行うニーズが急速に増えています。そこ で本サービスでは、R-CCSと東大情報基盤センターが運用するHPCI共用ストレージを活用して、高性能・高信頼なデータ転送を実現します。HPCI共用 ストレージで用いているオープンソース分散ファイルシステム「Gfarm」を活用した高速データ転送ツールを提供することで、幅広いユーザーが簡便に 利用できる環境を整えました。これにより、<u>スーパーコンピュータ「富岳^[4]」「Wisteria/BDEC-01^[5]」</u>をはじめとしたHPCIを構成するスーパーコン ピュータの能力を活用した大規模解析が容易になり、新たな研究成果が創出されることが期待できます。

関連リンク:<u>放射光科学研究センター X線自由電子レーザー施設 SACLA</u> 🛛

Source (May 14, 2021): https://www.riken.jp/pr/news/2021/20210514_1/

Big data transfer in SPring-8

- SPring-8 public beamlines (26 BLs) generated 0.32 PB/year in 2017
- With the next generation detector (CITIUS), it is projected that the facility will generate 1.3 ExaB of raw data per year in 2025
 - Actual transfer size can be reduced to 100-400 PB by
 - Image averaging/extraction
 - Reducing duty ratio to throttle data generation rate



We are trying to further compress this big data to accelerate data transfer from sensors to HPC systems

Compression of Time Evolutionary Image Data through Predictive Deep Neural Networks (CCGrid2021) [1]

Rupak Roy⁺¹, Kento Sato⁺², Subhadeep Bhattacharya⁺², Xingang Fang⁺², Yasumasa Joti⁺³,

Takaki Hatsui⁺³, Toshiyuki Nishiyama Hiraki⁺³, Jian Guo ⁺²and Weikuan Yu⁺¹

+1 Florida State University, +2 RIKEN Center for Computational Science, +3 RIKEN SPring-8 Center, +4 Anhui University of Finance and Economics

- We proposed new AI-driven data compressor (TEZIP) for time evolutaionary data
- We achieved higher compration ration compared to existing video encoder (Zstd, HFYU, FFV1, x.265)

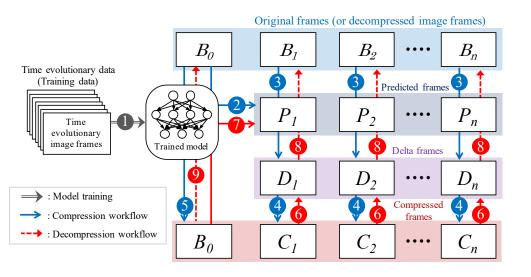


Fig. 1. Workflows of TEZIP (de)compression

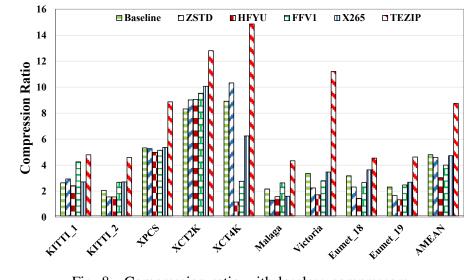
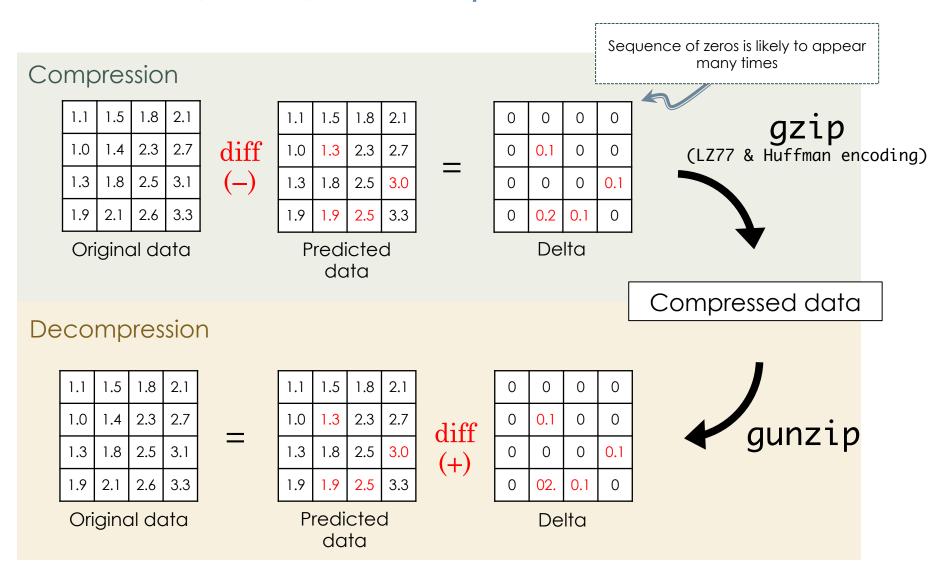


Fig. 8. Compression ratio with lossless compressors.

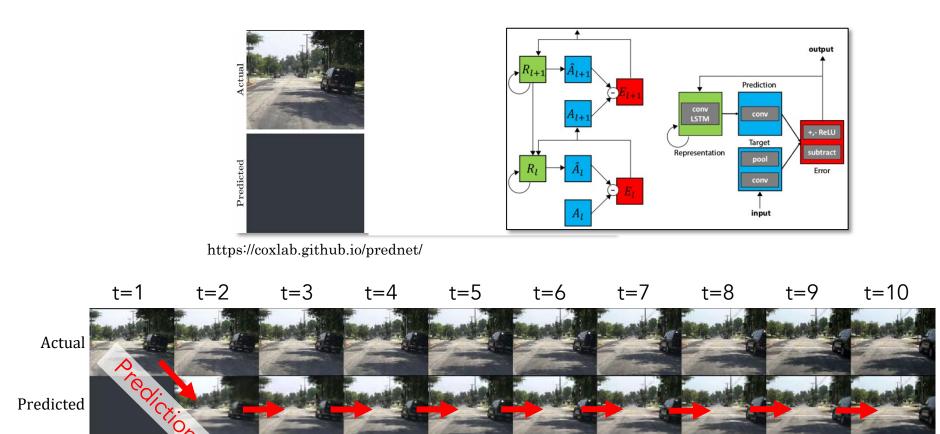
[1] Rupak Roy, Kento Sato, Subhadeep Bhattacharya, Xingang Fang, Yasumasa Joti, Takaki Hatsui, Toshiyuki Hiraki, Jian Guo and Weikuan Yu, "Compression of Time Evolutionary Image Data through Predictive Deep Neural Networks", In the proceedings of the 21 IEEE/ACM International Symposium on Cluster, Cloud and Internet Computing (CCGrid 2021), May, 2021

Prediction is one of keys for good compression



We use deep neural network (PredNet) for prediction

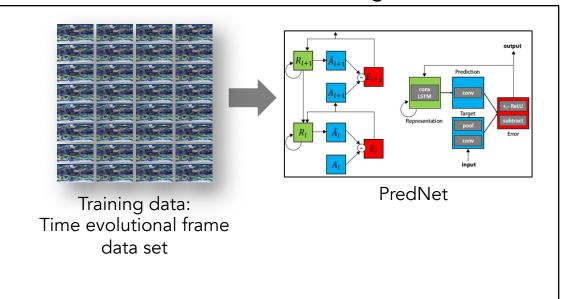
- PredNet [1]
 - Deep recurrent convolutional neural network
 - Given a frame of pictures/video, this NN can predict multiple future frames



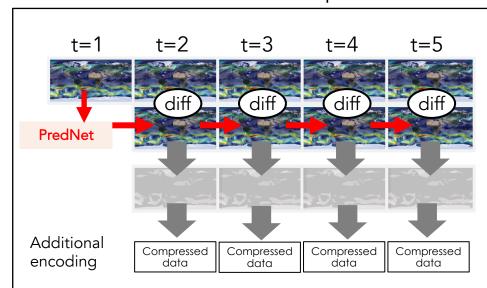
[1] Lotter, W., Kreiman, G., Cox, D.: Deep predictive coding networks for video prediction and unsupervised learning. arXiv preprint arXiv:1605.08104 (2016)

Compression: Predict future frames and encode

- We train PredNet to learn how pixels move and how fast
 - i.e.) Giving a number of time evolutional frames to PredNet
- When compressing frames from t=1 to t=5, we predict future frames from original data (t=1)
- We compute diff, apply series of encoding
- We only store (1) base frame data (t=1) and (2) compressed data

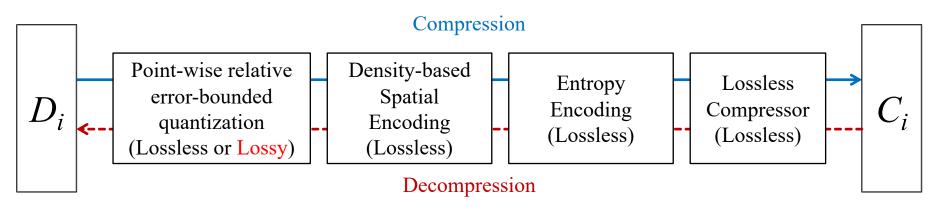


Training



Inference + Data compression

Encoding workflow



- Quantization is a key data conversion to give good compression rate
 - This data conversion tries to maximize data compression rate while bounding certain-level errors

Point-wise relative error bound

- All the individual values are kept below a specified error bound threshold (ε)
- Formulation
 - Give original data: $D = \{d_0, d_1, \dots, \}$ and quantized data: $D' = \{d'_0, d'_1, \dots, \}$
 - The following inequality holds for each data point:

$$\max_{\substack{d_i \in D, \, d'_i \in D'}} \left| \frac{d_i - d'_i}{d_i} \right| \le \varepsilon$$

Point-wise relative error-bounded quantization (Lossless)

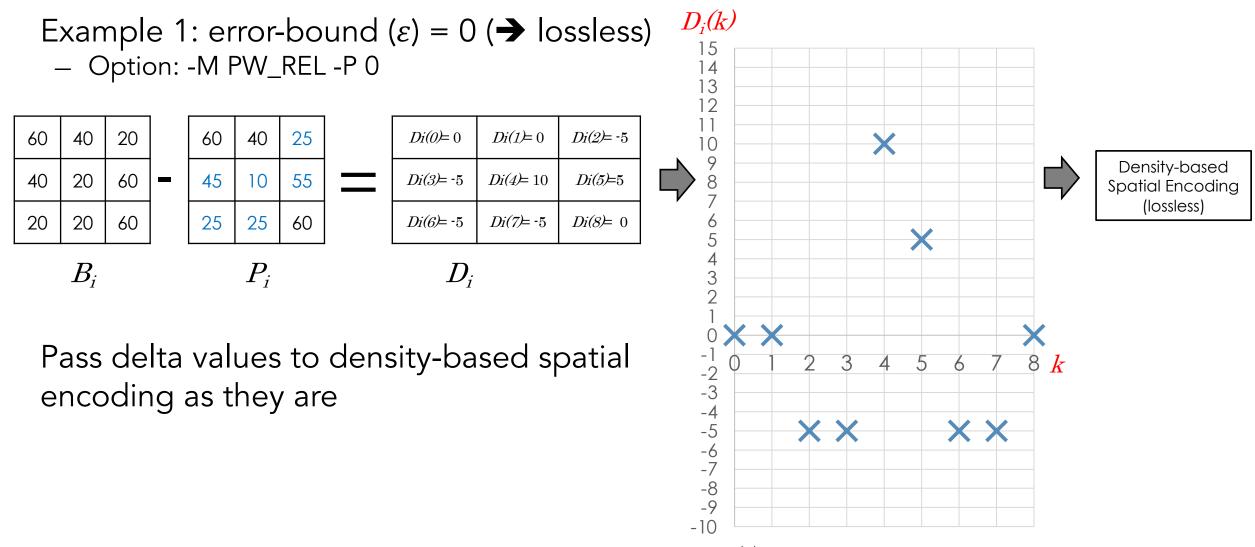


Fig. 2. $D_i(k)$: One-dementional vector expression of D_i

Point-wise relative error-bounded quantization (lossy)

Example 2: error-bound (ϵ) = 0.1 (\rightarrow Lossy 10% of errors) - Option: -M PW_REL -P 0.1

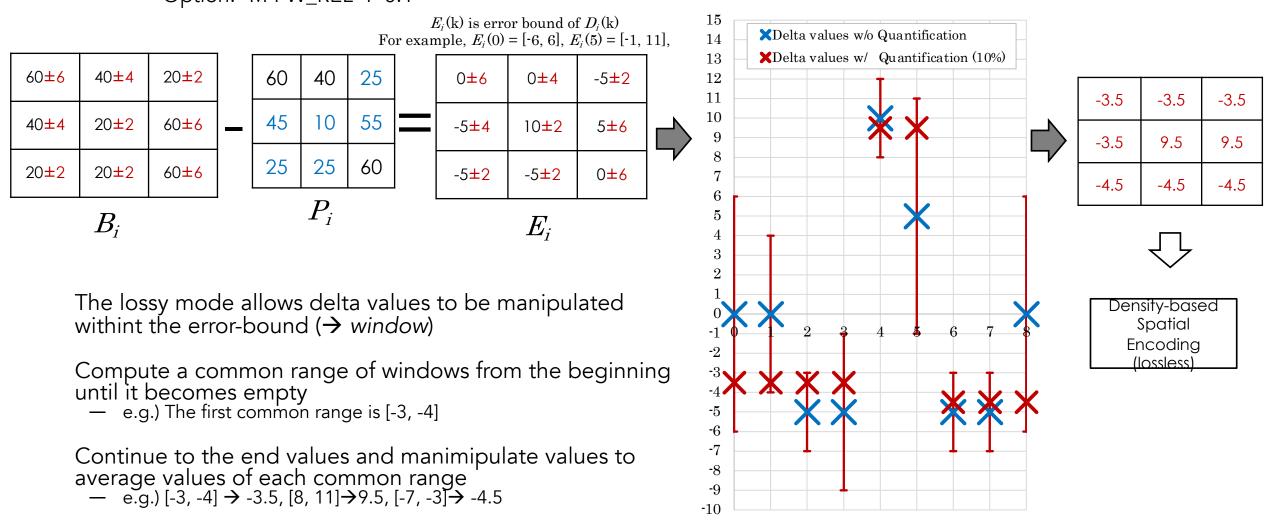
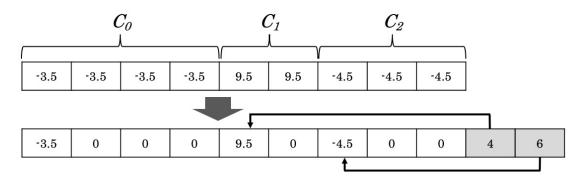


Fig. 2. $D_i(k)$: One-dementional vector expression of D_i

Following encodings

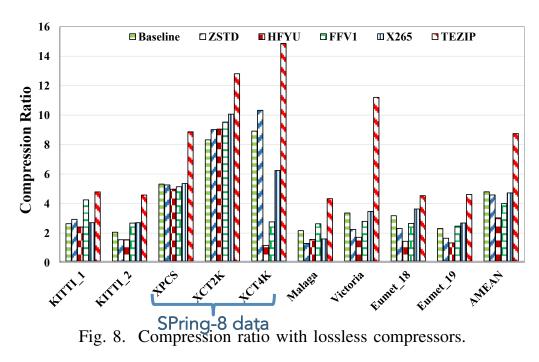
- Density-based Spatial Encoding
 - After the quantization, we see sequences of the same values (\rightarrow clusters)
 - We detect clusters and store delta in each cluster
 - It is likely that this encoding results in sequences of zeros



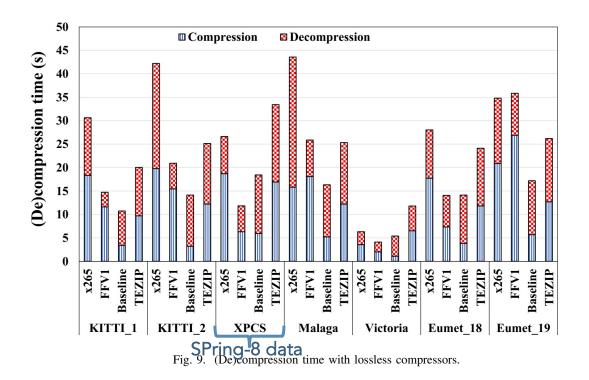
- Entropy Encoding
 - Replace highly recurrent values with smaller bits and replace less recurrent values with longer bits
 - e.g.) {0, 0, ...,0} → 0 , {-3.5, -3.5, ..., -3.5} → 1, {-9.5, -9.5, ..., -9.5} → 2
- Apply lossless compressor
 - We used Zstd in this work

TEZIP achieves high comprassion rate with comparable compression time

- TEZIP achieves an improvement up to 3.2× in terms of compression ratio.
- On average, lossless TEZIP delivers 2.1× better compression ratio compared to the second-best lossless compressor x265
- "Baseline" computes delta values from the previous frame

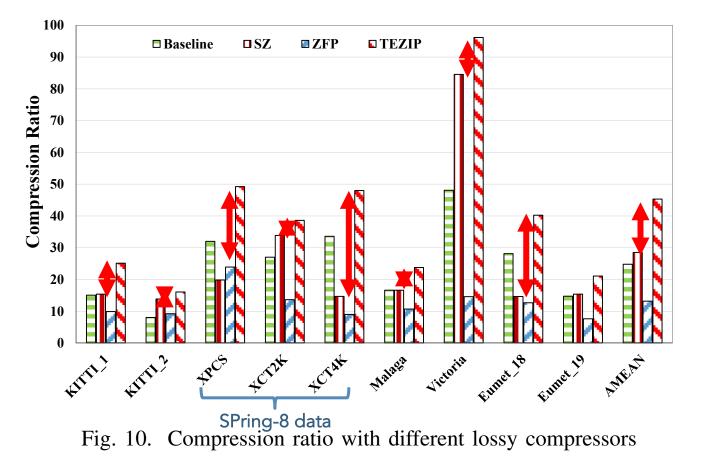


- TEZIP outperforms other lossless compressors for four datasets
- Overall, TEZIP performs 28% better than x265, while being comparable to FFV1



Lossy compression mode in TEZIP futher improves compression ratio under the same error-bound

- TEZIP's lossy compression mode can set point-wise relative error-bound at quantization
 - The error-bound is set for SZ and TEZIP (configurable) based on errors in ZFP (unconfigurable)
- Results
 - TEZIP achieves an improvement up to 3.3x than the second best (SZ) in terms of compression ratio



TEZIP is open-source software and future works

- We open-sourced TEZIP and released documents
- Future works
 - Improvement in quantization
 - Improvement in Prediction
 - TEZIP relies on a generic predictor (PreNet)
 - The compression ratio will be futhrer imporved with domain-specific predictors

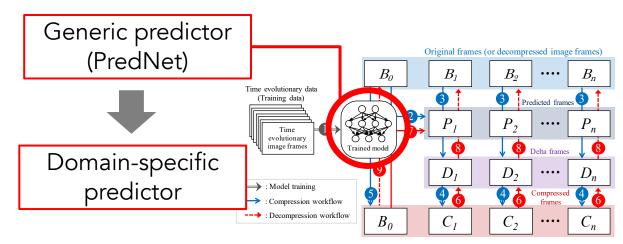


Fig. 1. Workflows of TEZIP (de)compression

This project is seeking for a Postdoc or a Researcher ! <u>https://www.hpbd.r-ccs.riken.jp/recruiting/</u>

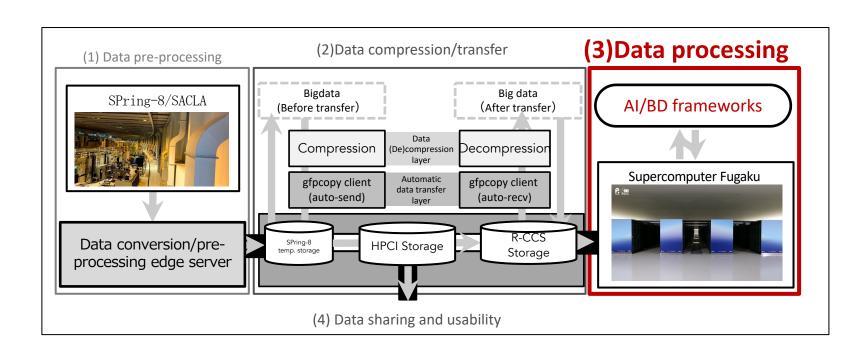
<u>Github:</u> https://github.com/kento/TEZip

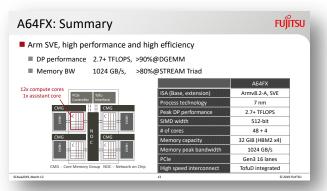
code 📀 Issues	Pull requests 1 💿 Actions 🔟 Projects 🗂	ou Wiki () Security i∠ Insights () Se
양 main → 양 1 branch	⊙ 0 tags	Go to file Add file • Code •
kento Merge pull reque	st #11 from arakihpbd/main	eae3254 3 days ago 🛽 28 commits
docs		
src src		
🗅 .gitignore		
README.md		
E README.md		
docs passing		
TEZip		
Data data compression	tool for time evolutonary data.	
Overview		
temporal and spatial pr	ep Neural Networks (DNNs) have demonstrated a pror oximity of time evolutionary data. In this paper, we hav work called TEZIP that can support dynamic lossy and	ve developed an effective

<u>Readthedocs:</u> https://tezip.readthedocs.io/en/latest/?badge=latest

Supercomputer Fugaku & Deep learning

- Once we move data to computers, the users will analyze the data and can use AI for the feature detection, Image recognition, segmentation etc.
- We must provide fast and scalable AI training environments on Fugaku
- GPU has become a popular platform for executing DL, but we revisit the idea of running DL on CPUs in Fugaku





Toshiyuki Shimizu, "Post-K Supercomputer with Fujitsu's Ori ginal CPU, A64FX Powered by Arm ISA", Nov. 15th, 2018

→ High perf. FP16/INT8
→ High bw mem (1024 GB/sec)
→ Scalable TofuD net.

To make use of Fugaku/A64FX performance, tuning AI software stack is indispensable

DL4Fugaku: Deep learning for Fugaku

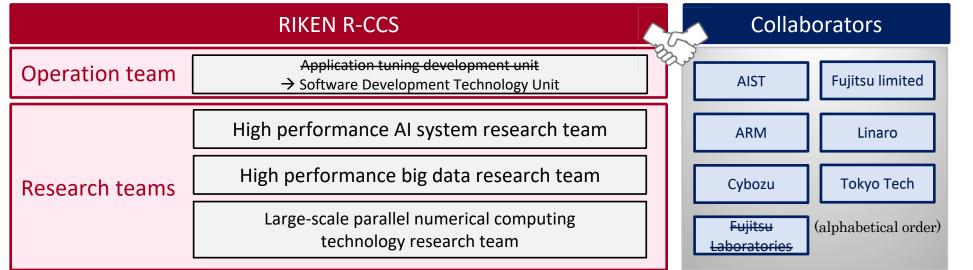
Objective: Fast and scalable deep learning on Fugaku/A64FX

- Conduct porting, performance analysis and tuning
- Deploy large-scale deep learning environment
- Enhance the usability for production use in Fugaku

MOU for RIKEN/Fujitsu collaboration on AI framework development in Fugaku (Nov. 25, 2019)

• RIKEN R-CCS internal teams are working together

- Under collaboration with Industry & academia
- Porting, tracing DL, performance analysis, tuning, merge to upstream



X Some of software introduced in the rest of DL4Fugaku project slides is under development. Experimental results will be changed in future in the course of tuning

DL4Fugaku Project Menbers

10 U				Minho
111.11				Advanced
	iimmii	ii .	ii .	Computing
		"mm"	"mm"	Center

FUJITSU

Framework & oneDNN porting & tuning

Naoki Shinjo, Akira Asato, Atsushi Ike, Koutarou Okazaki, Yoshihiko Oguchi, Masahiro Doteguchi, Jin Takahashi, Kazutoshi Akao, Masaya Kato, Takashi Sawada, Naoto Fukumoto, Kentaro Kawakami,

Naoki Sueyasu, Kouji Kurihara, Masafumi Yamazaki, Takumi Honda

RIKEN

Tuning for Fugaku

Satoshi Matsuoka, High Performance Artificial Intelligence Systems Research Team Leader Kento Sato, High Performance Big Data Research Team Leader Kazuo Minami, Application Tuning Development Unit Leader

Akiyoshi Kuroda, Application Tuning Development Unit

Cybozu[®]Labs

Technical support

Shigeo Mitsunari (Xbyak)

Porting and Tuning approach

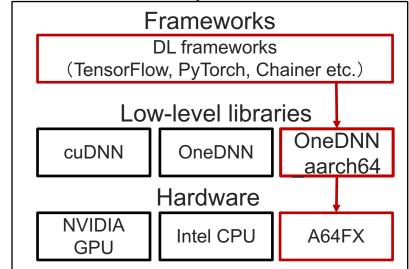
- Deep learning software stack
 - Deep learning frameworks reply on low-level numerical libraries optimized for specific hardware
 - cuDNN for NVIDIA GPU, OneDNN for Intel CPU, ??? for A64FX

Approach

We decided to tune OneDNN for Fugaku's A64FX CPUs (OneDNN_aarch64) instead of full scratch development
 Frameworks

• Current status

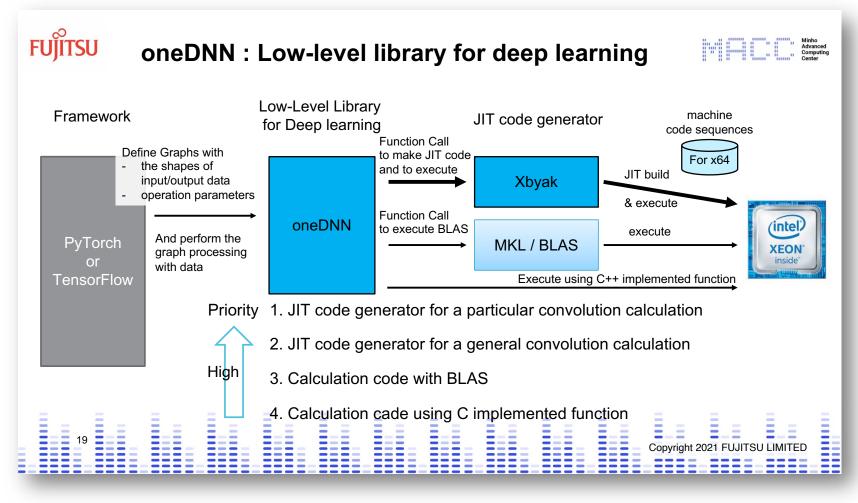
- The source codes are in a github repository
 - <u>https://github.com/fujitsu/dnnl_aarch64</u>
- We also contribute to upstream of OneDNN repo



Intel Math Kernel Library for Deep Neural Networks (Intel MKL-DNN) → Deep Neural Network Library (DNNL) → oneAPI Deep Neural Network Library (oneDNN)

Slide courtesy of Jin Takahashi, Fujitsu laboratory ltd. with translation and modifications

Original oneDNN@Intel logic

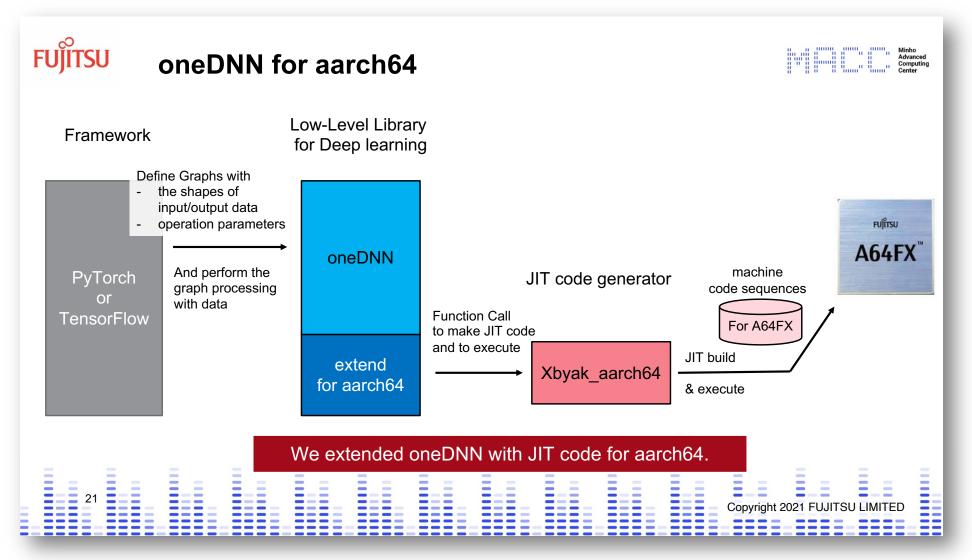


- OneDNN gets information from a framework about (1) Shapes of input/output data; (2) Operation parameteers of each layer
- 2. OneDNN calls the fastest tensor routine based on the information
- 3. The priority is
 - a) JIT-generated code
 - b) BLAS
 - c) C code implemented in OneDNN
- The generated code is cached and reused
- The same convolution kernels are called many time in deep learning
- The JIT-generation overhead is negligble for deep learning workloads

Slides: Masafumi Yamazaki (Fujitsu Ltd), "Deep learning on Fugaku", MUG: MACC User Group Workshop, June 2021

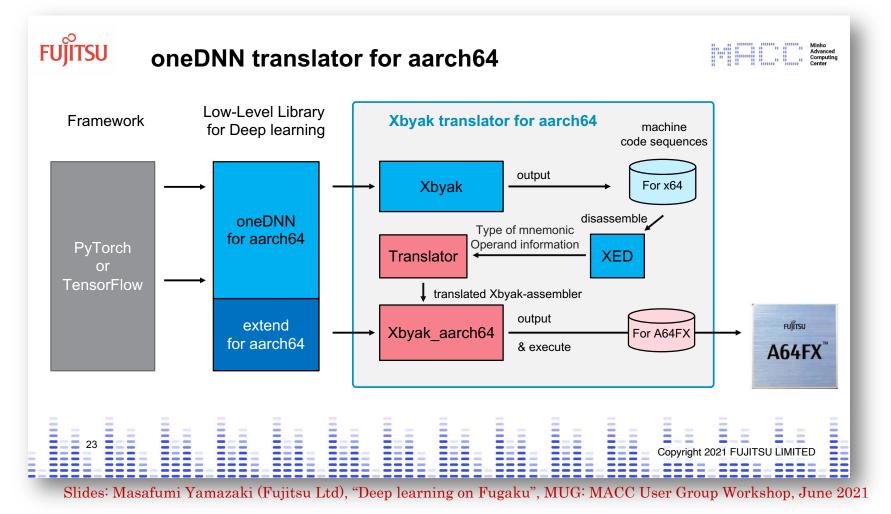
oneDNN for A64FX/aarch64

We extended OneDNN to generate aarch64 instructions via Xbyak



Slides: Masafumi Yamazaki (Fujitsu Ltd), "Deep learning on Fugaku", MUG: MACC User Group Workshop, June 2021

Sustanable Porting Workflows



 By using the Xbyak, XED-Translator cascade, when the instruction set is extended, Xbyak and XED are replaced with the updated ones, and we only need to modify the mapping table between intel and Arm instructions in the Translator.

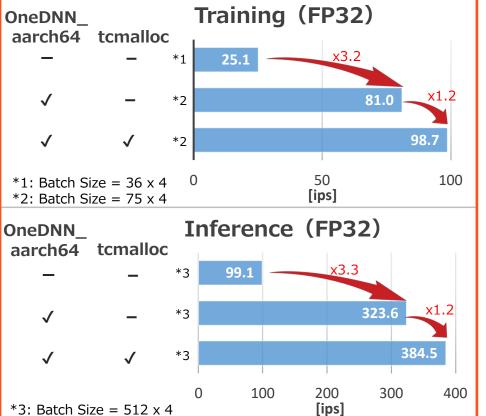
Perfomrance Evaluation: ResNet-50 on A64FX (A single node)

Environment

- HW: A64FX (2.2GHz, 48 cores, HBM2 32GB)
- SW: Fujitsu compier (fcc), Fujitsu numerical libraries (SSL-II)

[1] NVIDIA Data Center Deep Learning Product Performance, https://developer.nvidia.com/deep-learning-performance-training-inference

TensorFlow v2.1.0 Training (FP32) OneDNN tcmalloc aarch64 x9.2 x1.2 81.0 98.7 *4 \checkmark 0 50 100 [ips] *4: Batch Size = 61×4 Inference (FP32) OneDNN aarch64 tcmalloc x7.8 *5 37. 294.8 x1.2 323.6 *5 293.1 384.5 *5 100 200 0 300 400 [ips] *5: Batch Size = 128×4



300

Ref.) NVIDIA GPU V100: 905 ips [1] PyTorch/ResNet-50(training)/ImageNet2012

85.6

86.9

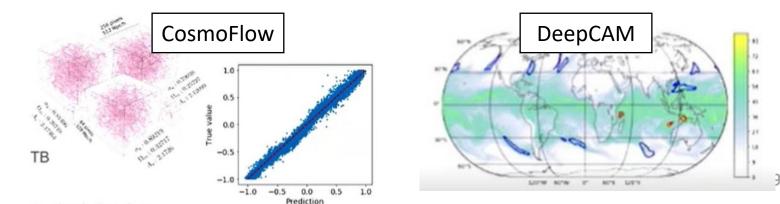
x1.0

100

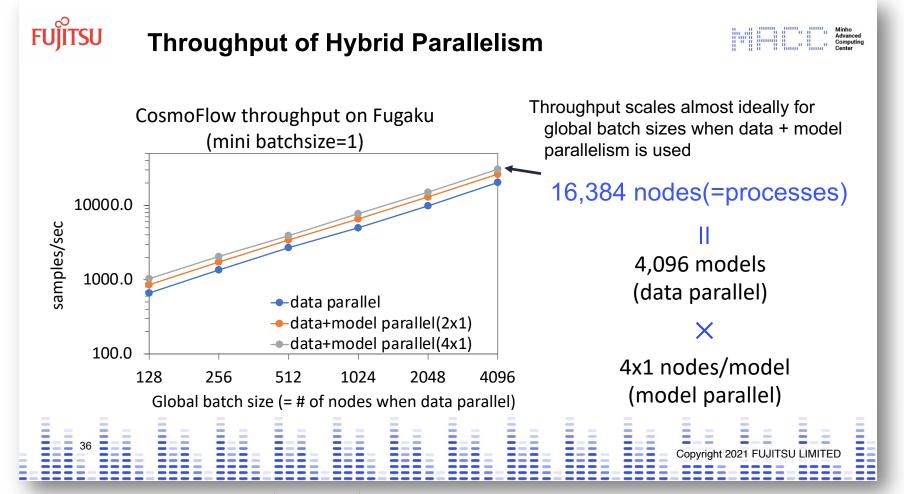
400

MLPerf HPC v0.7 Benchmark

- MLPerf HPC (v0.7) Benchmark
 - One of deep learning benchmarks in MLPerf HPC
 - Repository: <u>https://github.com/mlcommons/hpc</u>
 - Benchmarks
 - CosmoFlow (宇宙科学)
 - Predict cosmological parameters from N-body cosmo simulation data
 - 3D CNN for regression of 4 parameters
 - Training data shape is (128, 128, 128, 4)
 - Training data size is 5.1TB
 - DeepCAM(気候・気象)
 - Indentify extreme weather phenomena in climate simulation data
 - 2D semantic segmentation with DeepLabV3+ model which predicts 3 classes per pixel (atomaspheric river, tropical cyclon or background)
 - Training data shape is (768, 1152, 16) and labeled with 3 per-pixel classes
 - Training data size is 8.8 TB



Our process topology optimization enables scalable training



Slides: Masafumi Yamazaki (Fujitsu Ltd), "Deep learning on Fugaku", MUG: MACC User Group Workshop, June 2021

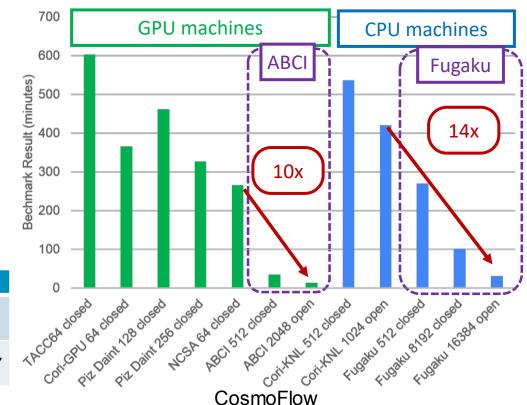
We achieved good scalability with a hybrid using of data&model parallel training

MLPerf HPC (v0.7) ranking: CosmoFlow

- Fugaku was ranked at No 2. in MLPerf HPC ranking (Nov., 2020) even with "<u>1/10 of Fugaku nodes</u>"
 - Fujitsu, AIST and RIKEN Achieve Unparalleled Speed on MLPerf HPC Machine Learning Processing Benchmark
 - <u>https://www.hpcwire.com/off-the-wire/fujitsu-aist-and-riken-achieve-</u> <u>unparalleled-speed-on-mlperf-hpc-machine-learning-processing-benchmark/</u>

							Benchmark res smaller is bette	
Submitter	System	Processor	#	Accelerator	#	Software	CosmoFlow	DeepCAM
e on-premises	3							
CSCS	daint_gpu_n128_tf2.2.0	Intel® Xeon® Processor E5-2690 v3 @2.60	128	NVIDIA P100-PCIE-160	128	TensorFlow 2.2.0	461.01	
CSCS	daint_gpu_n256_tf2.2.0	Intel® Xeon® Processor E5-2690 v3 @2.60	256	NVIDIA P100-PCIE-160	256	TensorFlow 2.2.0	327.01	
Fujitsu	ABCI PRIMERGY CX2570 M4	Intel® Xeon® Gold 6148 Processor @2.40	512	NVIDIA V100	1024	PyTorch 1.6.0		11.71
Fujitsu	ABCI PRIMERGY CX2570 M4	Intel® Xeon® Gold 6148 Processor @2.40	256	NVIDIA V100	512	TensorFlow 2.2.0	34.42	
Fujitsu/RIKEN	fugaku_512xA64FX_tensorflow_closed	FUJITSU Processor A64FX	512	N/A	0	TensorFlow 2.2.0 + Mesh TensorFlow	268.77	
Fujitsu	fugaku_8192xA64FX_tensorflow_closed	FUJITSU Processor A64FX	8192	N/A	0	TensorFlow 2.2.0 + Mesh TensorFlow	101.49	
LBNL	corigpu_n64_pt1.6.0	Intel® Xeon® Gold 6148 Processor @2.40	16	NVIDIA V100	64	PyTorch 1.6.0		139.29
LBNL	corigpu_n64_tf1.15.0	Intel® Xeon® Gold 6148 Processor @2.40	16	NVIDIA V100	64	TensorFlow 1.15.0	364.73	
LBNL	coriknl_n512_tf1.15.2	Intel® Xeon Phi™ Processor 7250 @1.40G	512	N/A	0	TensorFlow 1.15.2	536.06	
NCSA	hal_v100_n16_tf1.15.0	IBM POWER 9 model 2.2	32	NVIDIA V100	64	TensorFlow 1.15.0	265.59	
TACC	Frontera-RTX	Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.100	32	NVIDIA Quadro RTX 50	64	TensorFlow 1.15.2	602.23	
Division	Times							
							Benchmark resistent	
Submitter	System	Processor	#	Accelerator	#	Software	CosmoFlow	DeepCAM
e on-premises								
Fujitsu	ABCI PRIMERGY CX2570 M4	Intel® Xeon® Gold 6148 Processor @2.40	512	NVIDIA V100	1024	PyTorch 1.6.0		10.49
Fujitsu	ABCI PRIMERGY CX2570 M4	Intel® Xeon® Gold 6148 Processor @2.40	1024	NVIDIA V100	2048	TensorFlow 2.2.0	13.21	
Fujitsu	fugaku_16384xA64FX_tensorflow_open	FUJITSU Processor A64FX	16384	N/A	0	TensorFlow 2.2.0 + Mesh TensorFlow	30.07	
LBNL	coriknl n1024 tf1.15.2	Intel® Xeon Phi™ Processor 7250 @1.400	1024	N/A	0	Tensorflow 1.15.2	419.69	

Submitter	System	Processor	#	Software	Time [min]	
Fujitsu	ABCI	Xeon Gold 6148 Tesla V100 GPU	1024 2048	TensorFlow	13.21	
Fujitsu / RIKEN	Fugaku	A64FX	16384	TensorFlow + Mesh TensorFlow	30.07	,



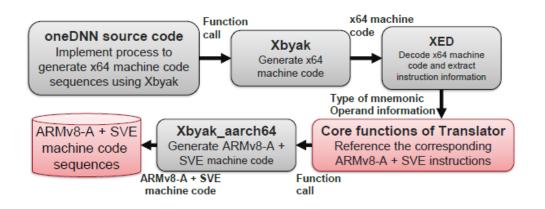
e 16,384-node Parallelism of 3D-CNN Training on An Arm CPU based Supercomputer (HiPC2021) [2]

uchi*, Koichi Shirahata*, Masafumi Yamazaki*, Akihiko Kasagi*, Takumi Honda*, Kouji Kurihara*, Tsuguchika Tabaru*, Naoto Fukumoto*, Akiyoshi Kuroda†, Takaaki Fukai† and Kento Sato†

*Fujitsu Limited, Kawasaki, Kanagawa, Japan †RIKEN Center for Computational Science, Kobe, Hyogo, Japan

vhich automatically generate tuned code for aarch64 from oneDNN that is originally tuned for x86 64. alable hybrid parallelism tuned for 6D mesh/torus network topology of TofuD interconnects with a name unapping technique for MPI_Allreduce;

• I/O acceleration for data loading with data compression, data staging and data caching techniques;



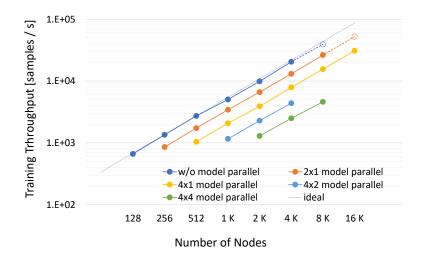
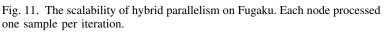


Fig. 3. Diagram of the process for converting an x86_64 machine instruction sequence into an Armv8-A + SVE machine instruction sequence.



[2] Akihiro Tabuchi, Koichi Shirahata, Masafumi Yamazaki, Akihiko Kasagi, Takumi Honda, Kouji Kurihara, Kentaro Kawakami, Tsuguchika Tabaru, Naoto Fukumoto, Akiyoshi Kuroda, Takaaki Fukai and Kento Sato, "The 16,384-node Parallelism of 3D-CNN Training on An Arm CPU based Supercomputer", 28th IEEE International Conference on High Performance Computing, Data, and Analytics (HiPC2021), Nov, 2021

MLPerf HPC: Benchmarking Machine Learning Workloads on HPC Systems (MLHPC2021@SC21) [4]

Steven Farrell, Murali Emani, Jacob Balma, Lukas Drescher, Aleksandr Drozd, Andreas Fink, Geoffrey Fox, David Kanter, Thorsten Kurth, Peter Mattson, Dawei Mu, Amit Ruhela, Kento Sato,, Koichi Shirahata, Tsuguchika Tabaru, Aristeidis Tsaris, Jan Balewski, Ben Cumming, Takumi Danjo, Jens Domke, Takaaki Fukai, Naoto Fukumoto, Tatsuya Fukushi, Balazs Gerofi, Takumi Honda, Toshiyuki Imamura, Akihiko Kasagi, Kentaro Kawakami, Shuhei Kudo, Akiyoshi Kuroda, Maxime Martinasso, Satoshi Matsuoka, Kazuki Minami, Prabhat Ram, Takashi Sawada, Mallikarjun Shankar, Tom St. John, Akihiro Tabuchi, Venkatram Vishwanath, Mohamed Wahib, Masafumi Yamazaki, Junqi Yin and Henrique Mendonca

(Collaborations with LBL, ANL, HPE, CSCS, Indiana Univ., MLCommons, NVIDIA, Google, NCSA, TACC, Fujitsu, ORNL, Microsoft, Cruise)

- Summarize results across different organizations from the MLPerf HPC submission round in 2020
- These results feature measurements from leading supercomputing platforms around the world, innovations in scalable model-and-data-parallel training and learning algorithms, and the largest scale MLPerf submission to date

Division	System	Submission	Software	#Processors	#Accelerators	$\textbf{Parallelism}^{\dagger}$	CosmoFlow	DeepCAM
Closed	Piz Daint	Piz-Daint-128	TensorFlow 2.2.0	128	128	2 s/1 GPU	461.01	-
	Piz Daint	Piz-Daint-256	TensorFlow 2.2.0	256	256	2 s/1 GPU	327.01	-
	ABCI	ABCI-1024	PyTorch 1.6.0	512	1,024	2 s/1 GPU	-	11.71
	ABCI	ABCI-512	TensorFlow 2.2.0	256	512	1 s/1 GPU	34.42	-
	Fugaku	Fugaku-512	TensorFlow 2.2.0 + Mesh TensorFlow	512	0	1 s/1 CPU	268.77	-
	Fugaku	Fugaku-8192	TensorFlow 2.2.0 + Mesh TensorFlow	8,192	0	1 s/16 CPUs	101.49	-
	Cori-GPU	Cori-GPU-64	PyTorch 1.6.0	16	64	2 s/1 GPU	-	139.29
	Cori-GPU	Cori-GPU-64	TensorFlow 1.15.0	16	64	1 s/1 GPU	364.73	-
	Cori-KNL	Cori-KNL-512	TensorFlow 1.15.2	512	0	1 s/1 CPU	536.06	-
	HAL	HAL-64	TensorFlow 1.15.0	32	64	1 s/1 GPU	265.59	-
	Frontera-RTX	Frontera-RTX-64	TensorFlow 1.15.2	32	64	1 s/1 GPU	602.23	-
Open	ABCI	*ABCI-1024	PyTorch 1.6.0	512	1,024	2 s/1 GPU	-	10.49
	ABCI	*ABCI-2048	TensorFlow 2.2.0	1,024	2,048	1 s/1 GPU	13.21	-
	Fugaku	★Fugaku-16384	TensorFlow 2.2.0 + Mesh TensorFlow	16,384	0	1 s/4 CPUs	30.07	-
	Cori-KNL	*Cori-KNL-1024	TensorFlow 1.15.2	1.024	0	1 s/1 CPU	419.69	-

TABLE IV

PERFORMANCE METRICS (TIME TO SOLUTION IN MINUTES) FROM SUBMISSIONS IN CLOSED AND OPEN DIVISIONS

[†] Data-parallel granularity of train step: # samples (s) processed by number of compute units forming a data-parallel unit in each train step. E.g. Piz-Daint-128 processes 2 samples ("local batch size") on each GPU (pure data-parallelism, batch size $128 \times 2 = 256$), whereas Fugaku-8192 processes 1 sample in each group of 16 CPUs (through model-parallelism within this group, data-parallelism across these groups of which there are 8192/16 = 512 = batch size).

Benchmark	Submission	Staging time (minutes)	$\frac{T_{staging}}{T_{epoch}}$
CosmoFlow	Cori-GPU-64	16.49 ± 0.61	2.55
	ABCI-512	0.76 ± 0.004	2.27
	*ABCI-2048	0.20 ± 0.004	1.56
	Fugaku-512	1.55 ± 0.11	0.64
	Fugaku-8192	3.77 ± 0.51	3.59
	*Fugaku-16384	0.88 ± 0.08	4.93
DeepCAM	ABCI-1024	2.20 ± 0.01	5.55
-	*ABCI-1024	1.96 ± 0.08	5.45

TABLE V

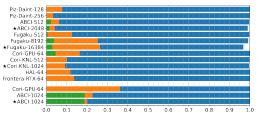


Fig. 1. Relative breakdown of time to train normalized to range [0-1], into staging (green), evaluation (orange) and training (blue). Lower three entries on y-axis are for DeepCAM, rest are for CosmoFlow.

 TABLE VII

 Workload characterization: memory bandwidth (single CPU/GPU), network and per-worker I/O bandwidth measurements

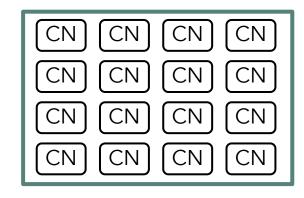
Benchmark	System	Memory Tool	Memory BW (GB/sec)	Network Tool	# units	Network BW (GB/sec)	Size (MB)	I/O Tool	I/O BW (GB/sec)
CosmoFlow	ABCI [†]	Nvprof	335.4	Horovod TL	512 GPUs	3.41	19.97	Nvprof	1.65
	Fugaku [†]	Perf	110.8	Mpitrace	512 CPUs	0.75	21.71	Timer-based	2.57
	Piz Daint	Nvprof	-	Horovod TL	256 GPUs	1.86	2.21	Darshan	0.51
	Summit	Nsight	233.1	Horovod TL	510 GPUs	2.24	22.0	Darshan	1.46
	ThetaGPU	Nsight	194.5	Horovod TL	128 GPUs	1.95	15.20	Darshan	1.98
DeepCAM	ABCI	Nvprof	153.1	Timer-based	512 GPUs	3.73	37.77	Darshan	2.36
	Summit	Nsight	254.7	Timer-based	510 GPUs	4.50	225.0		

[4] Steven Farrell, Murali Emani, Jacob Balma, Lukas Drescher, Aleksandr Drozd, Andreas Fink, Geoffrey Fox, David Kanter, Thorsten Kurth, Peter Mattson, Dawei Mu, Amit Ruhela, Kento Sato,,Koichi Shirahata, Tsuguchika Tabaru, Aristeidis Tsaris, Jan Balewski, Ben Cumming, Takumi Danjo, Jens Domke, Takaaki Fukai, Naoto Fukumoto, Tatsuya Fukushi, Balazs Gerofi, Takumi Honda, Toshiyuki Imamura, Akihiko Kasagi, Kentaro Kawakami, Shuhei Kudo, Akiyoshi Kuroda, Maxime Martinasso, Satoshi Matsuoka, Kazuki Minami, Prabhat Ram, Takashi Sawada, Mallikarjun Shankar, Tom St. John, Akihiro Tabuchi, Venkatram Vishwanath, Mohamed Wahib, Masafumi Yamazaki, Junqi Yin and Henrique Mendonca, "MLPerf HPC: A Holistic Benchmark Suite for Scientific Machine Learning on HPC Systems", The Workshop on Machine Learning in High Performance Computing Environments (MLHPC) 2021 in conjunction with SC21, Nov, 2021

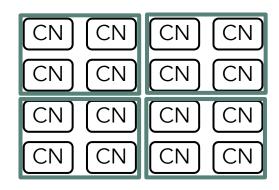
MLPerf HPC (v1.0) introduced scalability rules

- MLPerf HPC v0.7 in FY2020: Strong scaling metric
 - Strong scaling metric
 - Measures time to train one model on a system
 - Due to the large-batch problem, 1/10 of Fugaku nodes give the best performance
 - Benchmarks: CosmoFlow, DeepCAM
- MLPerf HPC v1.0 in FY2021: Strong + Weak scaling metric
 - v1.0 introduces a new weak scaling metric (in addition to strong scale metric)
 - Time-to-train → Throghputs (models/second)
 - Weak scaling metric
 - Train multiple models on a system and measure # of trained models per sec
 - Models are independently trainined eath other ans it is scalable
 - We could use 1/2 of Fugaku nodes
 - Benchmarks: CosmoFlow, DeepCAM and Catalyst
 - Six metrics: {CosmoFlow, DeepCAM and Catalsyt} x {Strong, Week}
 - → We targeted CosmoFlow & Week scaling metric

Training one model



Training multiple models



MLPerf HPC v1.0 result (CosmoFlow & Weak scaling metric)

Fugaku took first place in MLPerf HPC v1.0 (CosmoFlow, weak scaling metric)

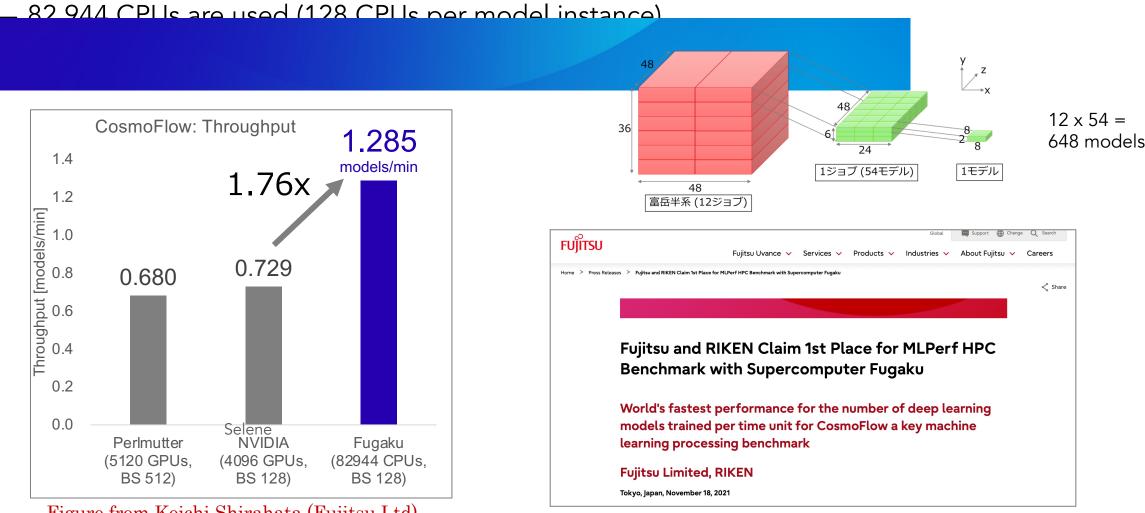
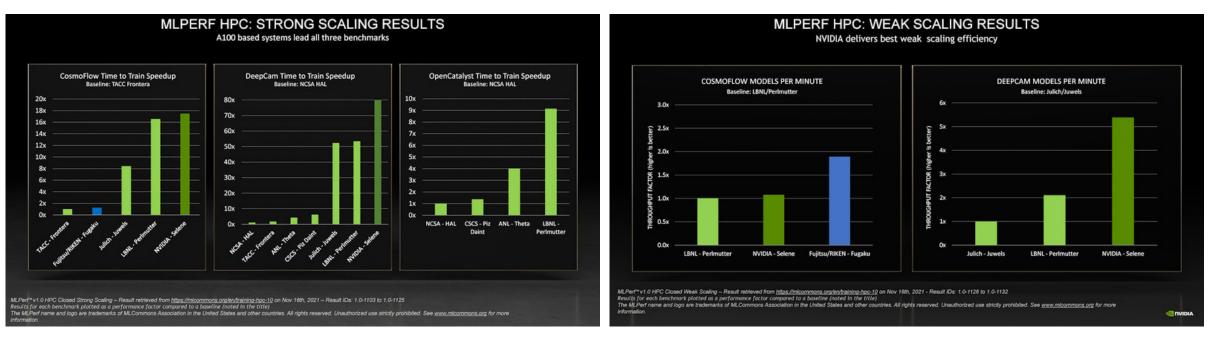


Figure from Koichi Shirahata (Fujitsu Ltd) presentation at SC21 BoF (MLPerf HPC)

Source: https://www.fujitsu.com/global/about/resources/news/press-releases/2020/1119-02.html

All results in MLPerf HPC v1.0

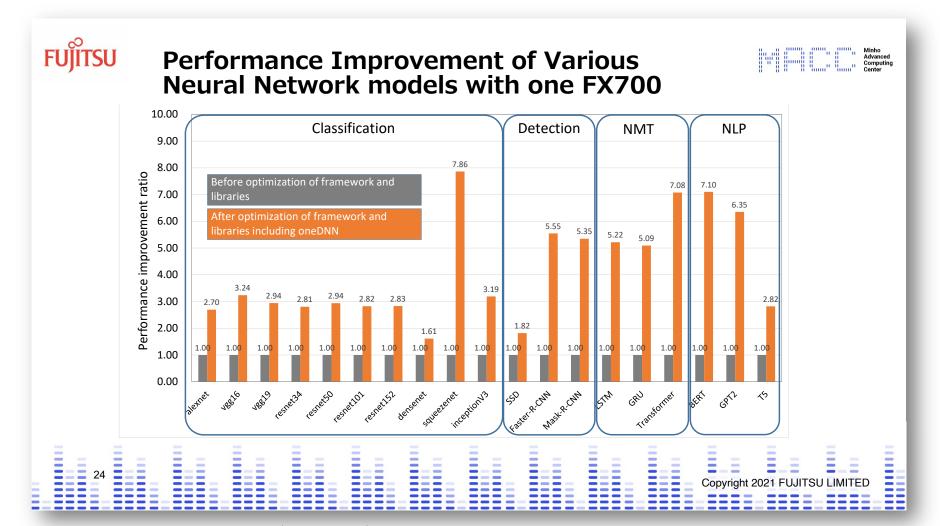
- Fugaku is the only CPU-based system amoung the submitters
- The rest of systems are NVIDIA GPU machines



Figures: https://www.hpcwire.com/2021/11/19/mlperf-issues-hpc-1-0-benchmark-results-featuring-impressive-systems-think-fugaku/

Performance results on other neural networks

 With tuned oneDNN for A64FX, we achieve1.6x to 7.8x performance improvement



Slides: Masafumi Yamazaki (Fujitsu Ltd), "Deep learning on Fugaku", MUG: MACC User Group Workshop, June 2021

Supported TensorFlow and PyTorch versions on Fugaku

- Fugaku officially supports TensorFlow-2.2.0, PyTorch-1.7.0/1.6.0. These versions are linked to the Fujitsu's oneDNN library tuned for A64FX
- Location
 - FEFS storage : /home/apps/oss/...
- Package versions

	環境			モデル対応	提供状況				
FW	OneDNN	Horovod	ResNet50	OpenNMT	ResNetX	BERT	Mask- RCNN	理研様提供	Fujitsu github 公開
PT v1.5.0	v0.21.0	v0.19.0	\checkmark					\checkmark	\checkmark
PT v1.6.0	v1.6.0	v0.20.3	\checkmark	\checkmark	\checkmark			\checkmark	\checkmark
PT v1.7.0	v2.1.0	v0.20.3	\checkmark	\checkmark	\checkmark	\checkmark		-	\checkmark
PT v1.7.0	v2.1.0L01	v0.20.3	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	-	\checkmark
TF v2.1.0	v0.21.2	v0.19.5	\checkmark					\checkmark	√
TF v2.2.0	v2.1.0	v0.19.5	\checkmark	\checkmark	\checkmark	\checkmark		-	√
TF v2.2.0	v2.1.0L01	v0.19.5	√	√	\checkmark	√	√	_	\checkmark

• Other: Python ver.3.8.2 + mpi4py ver.3.0.3, pandas ver.1.2.2, numpy ver.1.19.0, scipy ver.1.5.2, h5py ver.2.8.0, libtensorflow_cc.so ver.2.2.0, Batched BLAS ver.1.0, fapp ver.1.0.0 etc.

Summary

- Data pratform is important for data-drive science
 - We launched a project to build data pre-processing/compression/analysis/utilization platform for RCS facilities (SPring-8, SACLA) and Fugaku
 - For data compression, we introduced TEZip for fast data transfer
 - Al-driven data compression tool designed for time evolutionary data
 - Compression rates are up to 15 in the lossless mode and 50 in the lossy mode in the real SPring-8 data

DL4 Fugaku Project

- We extended OneDNN library for A64FX by developoing the Xbyak translator
- In MLPerf HPC v1.0 (CosmoFlow), Fugaku recieved No. 1 in the weak scaling metric
- We also tuned many other NNs such as data classification, detection, NMT and NLP
- Working with the operation team, we woulid like to enable the usability of Fugaku and other systems

Our team is seeking for researchers, postdocs and Ph.D. students. If you are interested in joining our projects, pleasae feel free to contact me: kento.sato@riken.jp