
Low/Adaptive Precision Computation in

Preconditioned Iterative Solvers for

Ill-Conditioned Problems

Masatoshi Kawai (ITC U-Tokyo)

International Worskhop on the Integration of (S+D+L) :

Toward Society 5.0 h3-Open-BDEC

2021/11/30

Online

Outline

2

1. Objective

2. Low/Adaptive precisions

3. P3D application (ICCG method)

4. Numerical evaluations

5. Conclusion

Objective

3

The effectiveness of the low/adaptive precisions are discussed in the field of deep learning, mainly.

Considering the effectiveness of low/adaptive precision on ICCG method.

If targeted data can be expressed in the low/adaptive precisions

The use of the lower precision reduces execution time

Because of improving an efficiency of a SIMDization and reducing amount of memory transfer.

Background

As same as practical simulations,

◼ The use of lower precision reduces the execution time.

◼ FP21 (arbitrary precision) is proposed and evaluated on the seismic simulation on a GPU*1.

In this study, we evaluate the effectiveness of low/adaptive precision with iterative method on CPUs.

◼ ICCG is one of the most famous iterative method which require high accuracy of computations.

◼ The performance of the ICCG method is determined by memory bandwidth.

*1 T. Ichimura et al., "A Fast Scalable Implicit Solver for Nonlinear Time-Evolution Earthquake City Problem on Low-Ordered Unstructured Finite Elements with

Artificial Intelligence and Transprecision Computing," SC18: International Conference for High Performance Computing, Networking, Storage and Analysis, 2018,

pp. 627-637

Outline

4

1. Objective

2. Low/Adaptive precisions

3. P3D application (ICCG method)

4. Numerical evaluations

5. Conclusion

Data formats

5

Considering following data formats

Use FP21 and FP42 reduces data transfer between memory and CPU to 2/3 compared with FP32

and FP64.

For computing FP21 and FP42, it require data casting because of unsupported by FPUs.

FP64

FP32

FP21

FP16

sign 1bit
exp 11bits frac 52bits

frac 23bitsexp 8bits

exp 8bits frac 12bits

exp 5bits frac 10bits

FP42

exp 11bits frac 30bits

Adaptive precision

(Not standardized by IEEE754)

Expressive ability of each data format

6

Wider data format have a higher expressive ability.
It has strong impact on exponent part, especially.

Formats
Significand :

Number of decimal digits

Exponent :

Maximum exponent in decimal

FP64 15.95 308

FP42 9.33 308

FP32 7.22 38

FP21 3.91 38

FP16 3.31 5

Expressive ability translated to a decimal number

10𝑦 = 2𝑥+1

𝑦 = 𝑥 + 1 log10 2.

Expressive ability of the significand is computed as following

x+1 is produced by hidden bit

Then, y denotes number of decimal digits, and x denotes number of bits of exponent part.

Type casting between FP21 and FP32

7

#define fp21x3 integer(4)

function fp32x3_to_fp21x3_f(a1, a2, a3) result(b)
implicit none
real(4), intent(in) :: a1, a2, a3
fp21x3 :: b
fp21x3 c
call cast_fp32_to_fp21x3(a1, c)
b(1) = shiftr(iand(c, int(Z'fffff800', 4)), 11)
call cast_fp32_to_fp21x3(a2, c)
c = iand(c, int(Z'fffff800', 4))
b(1) = ior(b(1), shiftl(c, 10))
b(2) = shiftr(c, 22)
call cast_fp32_to_fp21x3(a3, c)
b(2) = ior(b(2), iand(c, int(Z'fffff800', 4)))

end function fp32x3_to_fp21x3_f

subroutine cast_fp32_to_fp21x3(a, b)
implicit none
fp21x3, intent(in) :: a
fp21x3, intent(out) :: b
b = a

end subroutine cast_fp32_to_fp21x3

FP32→FP21 Left shows a Fortran pseudo code for type

casting from FP21 to FP32

Three FP21 data are stored by two 32bits integer

data format.

◼ We implement type casting without changing

internal bit information (reinterpret cast) by calling

subroutine with different argument data type.

◼ To SIMDize type casting calls, we add a link time

optimization options to compiler for facilitating

subroutine/function expansions.

◼ Storing three FP21 data to two 32bits integer is

new optimization.

⚫ In the previous study of FP21, authors are

store three FP21 data to 64bits integer.

⚫ Number of computations per one SIMD

instruction is capped by the widest data

format.

One 64bits integer : 8 data

Two 32bits integer : 16 data
per one 512bits SIMD

Outline

8

1. Objective

2. Low/Adaptive precisions

3. P3D application (ICCG method)

4. Numerical evaluations

5. Conclusion

P3D : Steady State 3D Heat Conduction by FVM

9

We use P3D application for numerical evaluations

◼ Simulation of 3D heat conduction

⚫ ∇ ∙ 𝜆∇𝜙 + 𝑓 = 0
⚫ Discretized by FVM

⚫ Seven-point stencil

◼ Boundary conditions

⚫ 𝜙 𝑋𝑚𝑖𝑛 、 𝜙 𝑋𝑚𝑎𝑥 、𝜙 𝑌𝑚𝑖𝑛 、𝜙 𝑌𝑚𝑎𝑥 、 𝜙 𝑍𝑚𝑖𝑛 = 0
⚫ 𝜙 𝑍𝑚𝑎𝑥 = 𝑓

◼ Factor l : thermal diffusivity

⚫ A distribution of thermal diffusivity is showing right figure

✓ 𝜆1 = 1、1 ≤ 𝜆2 ≤ 1010

◼ ICCG solver

⚫ IC preconditioner is parallelized by multi-coloring method

with CM-RCM algorithm

CM-RCM : Cyclic-multicoloring + Reverse Cuthill Mckee

𝜆1

𝜆1

𝜆2

Coefficient matrix of P3D

10

The thermal diffusivity 𝜆 in the target problem has strong impact on a condition number.

𝑎𝑖,𝑗 =

−
𝑑𝑦 ∙ 𝑑𝑧

𝑑𝑥
2

1
𝜆𝑥,𝑦,𝑧

+ 1
𝜆𝑥−1,𝑦,𝑧

、 𝑗 = 𝑖 − 1

−
𝑑𝑦 ∙ 𝑑𝑧

𝑑𝑥
2

1
𝜆𝑥,𝑦,𝑧

+ 1
𝜆𝑥+1,𝑦,𝑧

、 𝑗 = 𝑖 + 1

−
𝑑𝑥 ∙ 𝑑𝑧

𝑑𝑦
2

1
𝜆𝑥,𝑦,𝑧

+ 1
𝜆𝑥,𝑦−1,𝑧

、 𝑗 = 𝑖 − 𝑛𝑥

−
𝑑𝑥 ∙ 𝑑𝑧

𝑑𝑦
2

1
𝜆𝑥,𝑦,𝑧

+ 1
𝜆𝑥,𝑦+1,𝑧

、 𝑗 = 𝑖 + 𝑛𝑥

−
𝑑𝑥 ∙ 𝑑𝑦

𝑑𝑧
2

1
𝜆𝑥,𝑦,𝑧

+ 1
𝜆𝑥,𝑦,𝑧−1

、 𝑗 = 𝑖 − 𝑛𝑥 × 𝑛𝑦

−
𝑑𝑥 ∙ 𝑑𝑦

𝑑𝑧
2

1
𝜆𝑥,𝑦,𝑧

+ 1
𝜆𝑥,𝑦,𝑧+1

、 𝑗 = 𝑖 + 𝑛𝑥 × 𝑛𝑦

෍
𝑘=1

𝑁

−𝑎𝑖,𝑘 、 𝑗 = 𝑖

0、 others

If the factor 𝜆 in the target problem has large difference,

diagonal and off-diagonal elements also have

large difference.

→ We can control the condition number.

In this study, we change the factor 𝜆2 in numerical

experiments for evaluating the difference among the

data formats. (𝜆1 is a constant)

ICCG method

11

We apply low/adaptive precision to the IC preconditioner

do k = 1, until converge

𝛼 =
(𝒓𝒌,𝒑𝒌)

𝒑,𝑘 𝑨𝒑𝑘

𝒙𝑘+1 = 𝒙𝑘 + 𝛼𝒑𝑘 𝒒𝑘: vector shows searching direction

𝒓𝑘+1 = 𝒓𝑘 − 𝛼𝑨𝒑𝑘 𝒓𝑘: residal vector

ƴ𝒓 = 𝒓𝑘

𝒒 = ሖ𝑼−1 ሖ𝑫−1 ሖ𝑳−1 ƴ𝒓

𝒑𝑘+1 = 𝒒 −
𝒒,𝒓𝑘+1

𝜌
𝒑𝑘 , 𝜌 = 𝒒, 𝒓𝑘+1

enddo

Algorithm of ICCG

If we change the data format of the….

◼ coefficient matrix → the problem to be solved may change.

◼ vectors excluding ƴ𝒓、 𝒒 → the convergence ratio is changed significantly

because of low accuracy of inner-products

◼ matrix ሖ𝑼−1 ሖ𝑫−1 ሖ𝑳−1 and vectors ƴ𝒓、 𝒒 for the IC preconditioner

→ it is efficient because of high computational cost and

lower sensitivity to the convergence ratio.

Applying arbitrary precisions to IC preconditioner

12

Considering two implementation to apply arbitrary precision to IC preconditioner

→ Row-wise and column-wise

real(8) ALpre(DoF, NoC)

do j = 1, NoC

do i = 1, DoF

q(i) = q(i) − ALpre(i, j) ∗ rd(idx_colum(i, j))

enddo

enddo

fp21x3 ALpre(DoF/3*2, NoC)

real(4) ALpre1, ALpre2, ALpre3

do j = 1, NoC

do i = 1, DoF, 3

k = (i – 1) / 3 * 2 + 1

call fp21x3_to_floatx3_f(ALpre(k:, j), ALpre1, ALpre2, ALpre3)

q(i) = q(i) − ALpre1 ∗ rd(idx_colum(i, j))

q(i+1) = q(i+1) − ALpre2 ∗ rd(idx_colum(i+1, j))

q(i+2) = q(i+2) − ALpre3 ∗ rd(idx_colum(i+2, j))

enddo

enddo

fp21x3 ALpre(DoF, NoC/3*2)

real(4) ALpre1, ALpre2, ALpre3

do j = 1, NoC, 3

k = (j – 1) / 3 * 2 + 1

do i = 1, DoF

call fp21x3_to_floatx3_f(ALpre(i, k:), ALpre1, ALpre2, ALpre3)

q(i) = q(i) − ALpre1 ∗ rd(idx_colum(i, j))

q(i) = q(i) − ALpre2 ∗ rd(idx_colum(i, j+1))

q(i) = q(i) − ALpre3 ∗ rd(idx_colum(i, j+2))

enddo

enddo

Row-wise

Column-wise

Evaluating both implementations and choose

better one on each system.

Outline

13

1. Objective

2. Low/Adaptive precisions

3. P3D application (ICCG method)

4. Numerical evaluations

5. Conclusion

Numerical environments

14

Env 1 ： Oakforest-PACS (OFP)

◼ Xeon Phi

⚫ 64 cores,128threads, MCDRAM

◼ Intel compiler (v19.1.1.304)

⚫ Options : -O3 -xMIC-AVX512 -qopenmp -align array64byte –ipo

⚫ Numerical environments: KMP_HW_SUBSET=64c@2,2t

Env 2 ： Oakbridge-CX (OBCX)

◼ Xeon Gold Platinum 8280 × 2

⚫ 56cores, 56threads, DDR4

◼ Intel compiler (v19.1.1.304)

⚫ Options ： -O3 -xHost -qopenmp -align array64byte –ipo

Env3 ： Wisteria/BDEC-01 Odyssey (WO)

◼ A64FX

⚫ 48cores, 48 threads, HBM2

◼ Fujitsu compiler (4.5.0 tcscd-1.2.31)

⚫ Options : -O3 -Kfast,openmp,zfill,A64FX,ARMV8_A

⚫ Numerical environments : FLIB_FASTOMP=TRUE, FLIB_HPCFUNC=TRUE,

XOS_MMM_L_PAGING_POLICY=demand:demand:demand

Conditions of application (P3D)

15

P3D application

◼ DoF : 2563 = 16,777,216

◼ Thermal diffusivity : 𝜆1 = 1, 1 ≤ 𝜆2 ≤ 1010

ICCG solver

◼ Parallelized IC preconditioner with multi-coloring approach

⚫ Cyclic Multi-coloring + Reverse Cuthill-Mckee （CM-RCM）
⚫ Number of colors for CM-RCM : 10 colors

⚫ Convergence condition is
𝑟𝑘

2

𝑟0 2
≤ 10−8

⚫ Storage format of the matrices is Sell-C-s

◼ Combination of the data formats of the matrix and vector

✓ FP64-FP64

✓ FP42-FP64

✓ FP32-FP64

✓ FP64-FP32

✓ FP32-FP32

✓ FP21-FP32

✓ FP16-FP32

Denoted as data format of “matrix”vector”

In descending order of the amount of memory transfer

＊FP16 vector is not included because it dose not converged.

Blue： Only evaluate on OFP，OBCX

Green：Only evaluate on WO

Efficiency of two 32bits integers storing of FP21

16

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

integer(8) integer(4) integer(8) integer(4)

C
o

m
p

u
ta

ti
o

n
al

 t
im

e
[s

]

OFP (Xeon Phi) OBCX (CascadeLake)

Computational time of the preconditioner part

Storing FP21 by two 32bits integer improves a performance by 26.1%.

26.1%

◼ Storing FP21 by two 32bits integers have

shown 26.1% performance improvement

on OFP.

◼ Less effective on OBCX

Overhead of type casting of adaptive precisions

17

0.0

1.0

2.0

3.0

4.0

5.0

6.0

C
o

m
p

u
ta

ti
o

n
al

 t
im

e
[s

]

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

C
o

m
p

u
ta

ti
o

n
al

 t
im

e
[s

]

OFP OBCX

The overhead of typecasting is enough small. （Up to 1.5%)

For measuring the overhead of typecasting, we prepared a dummy code that changed the FP21 or FP42

loading function to normal loading with the same amount of reference data.

Comparison between Column-wise and Row-wise expansion

18

0.0

1.0

2.0

3.0

4.0

5.0

6.0

C
o

m
p

u
ta

ti
o

n
al

 t
im

e
[s

]

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

C
o

m
p

u
ta

ti
o

n
al

 t
im

e
[s

]
Column-wise expansion for implementing adaptive precision is

faster than the row-wise.
→ We use column-wise implementation for following evaluations.

FP21 FP42 FP21 FP42

OFP OBCX

0

500

1000

1500

2000

2500

1.00E+00 1.00E+03 1.00E+06 1.00E+09

N
u

m
b

er
 o

f
it

er
at

io
n

s

l2

FP64-FP64 FP42-FP64
FP32-FP64 FP32-FP32
FP21-FP32

0

500

1000

1500

2000

2500

1.00E+00 1.00E+02 1.00E+04 1.00E+06 1.00E+08 1.00E+10

N
u

m
b

er
 o

f
it

er
at

io
n

s

l2

FP64-FP64 FP42-FP64
FP32-FP64 FP32-FP32
FP21-FP32

The difference between data format on convergence ratio

19

0

500

1000

1500

2000

2500

3000

1.00E+00 1.00E+02 1.00E+04 1.00E+06 1.00E+08 1.00E+10
N

u
m

b
e

r
o

f
it

er
at

io
n

s

l2

SCS FP64-FP64 SCS FP32-FP64
SCS FP32-FP32 SCS FP16-FP64
SCS FP16-FP32

Unconverged

OFP

OBCX

WO

Different combination of data formats shows different convergence ratio.

◼ There is no impact of lower data-precision

under good conditions.

◼ FP32-FP16 is not converged with condition
𝜆2

𝜆1
> 105 → Beyond expression ability of FP16

◼ Convergence ratio get worse on ill-condition by

changing vectors FP64→FP32

0

20

40

60

1.00E+00 1.00E+02 1.00E+04 1.00E+06 1.00E+08 1.00E+10

C
o

m
p

u
ta

ti
o

n
al

 t
im

e
[s

]

l2

FP64-FP64 FP42-FP64
FP32-FP64 FP32-FP32
FP21-FP32

0

10

20

30

40

1.00E+00 1.00E+02 1.00E+04 1.00E+06 1.00E+08 1.00E+10

C
o

m
p

u
ta

ti
o

n
al

 t
im

e
[s

]

l2

FP64-FP64 FP42-FP64
FP32-FP64 FP32-FP32
FP21-FP32

Performance improvement by low/adaptive precisions

20

0

5

10

15

20

1.00E+00 1.00E+02 1.00E+04 1.00E+06 1.00E+08 1.00E+10

C
o

m
p

u
ta

ti
o

n
al

 t
im

e
[s

]

l2

SCS FP64-FP64 SCS FP32-FP64
SCS FP32-FP32 SCS FP16-FP64
SCS FP16-FP32

OFP

OBCX WO

Low/Adaptive precision shows reduce computational time.

◼ FP16-FP32 was the fastest within the good condition.

⚫ 17.3% compared with FP64-FP64

◼ FP21-FP32 was the fastest within the good condition.

on OFP and OBCX.

⚫ 18.4%(OFP), 18.6%(OBCX)

◼ FP32-FP64 was the fastest in intermediate conditions.
◼ FP21-FP32 was faster in worse condition, again.

⚫ 12.6％(OFP), 13.7%(OBCX)

Outline

21

1. Objective

2. Low/Adaptive precisions

3. P3D application (ICCG method)

4. Numerical evaluations

5. Conclusion

Conclusion

22

◼ Evaluate the usefulness of low precision such as FP32 and FP16 and arbitrary precision such

as FP42 and FP21 in real applications where the use of FP64 is typical.

⚫ We choose the P3D for the evaluations as the real application.

⚫ ICCG solver is included in the P3D and it is a typical application using FP64.

◼ We optimize the load and store routine of FP21 on CPUs for general purpose.

⚫ We change a storing data type of FP21 from one 64bits integer to two 32bits integers.

◼ In the numerical evaluations, we apply low/adaptive precisions to an IC preconditioner part.

⚫ The preconditioner part is implemented with Sell-C- storage format.

◼ The use of low/adaptive precision improve performance of ICCG method.

⚫ The effectiveness of Low/adaptive precision is high within the good conditions and

expressible range of FP16

⚫ The fastest combination of the matrix and vector is changed depending on the condition of

the coefficient matrix.

Future work

◼ Considering an auto-tuning approach to dynamically select the best precision.

23

