Low/Adaptive Precision Computation In
Preconditioned lterative Solvers for
lll-Conditioned Problems

Masatoshi Kawal (ITC U-Tokyo)
International Worskhop on the Integration of (S+D+L) :
Toward Society 5.0 h3-Open-BDEC
2021/11/30
Online

Outline

1. Objective

2. Low/Adaptive precisions

3. P3D application (ICCG method)
4. Numerical evaluations

5. Conclusion

Objective

Considering the effectiveness of low/adaptive precision on ICCG method.

/ Background \

The effectiveness of the low/adaptive precisions are discussed in the field of deep learning, mainly.

If targeted data can be expressed in the low/adaptive precisions

S~

The use of the lower precision reduces execution time

Because of improving an efficiency of a SIMDization and reducing amount of memory transfer.

As same as practical simulations,
B The use of lower precision reduces the execution time.
\ B FP21 (arbitrary precision) is proposed and evaluated on the seismic simulation on a GPU™., /

In this study, we evaluate the effectiveness of low/adaptive precision with iterative method on CPUs.
B ICCG is one of the most famous iterative method which require high accuracy of computations.
B The performance of the ICCG method is determined by memory bandwidth.

*1 T. Ichimura et al., "A Fast Scalable Implicit Solver for Nonlinear Time-Evolution Earthquake City Problem on Low-Ordered Unstructured Finite Elements with
Artificial Intelligence and Transprecision Computing,” SC18: International Conference for High Performance Computing, Networking, Storage and Analysis, 2018,

pp. 627-637

Outline

2. Low/Adaptive precisions

Data formats

Considering following data formats
ign 1bit

exp 11bits frac 52bits
FP64 I
exp 11bits frac 30bits
FPa2 I
exp 8bits frac 23bits

FP32 I

exp 8bits frac 12Dits Adaptive precision
FP21 IIIIIIIIIIII< (Not standardized by IEEE754)

exp 5Sbits frac 10bits

Fe16 | LRR A NREEN

Use FP21 and FP42 reduces data transfer between memory and CPU to 2/3 compared with FP32
and FP64.
For computing FP21 and FP42, it require data casting because of unsupported by FPUs.

Expressive ability of each data format

Wider data format have a higher expressive ability.
It has strong impact on exponent part, especially.

Expressive ability translated to a decimal number

Formats Significa_nd - | Exponent : |
Number of decimal digits Maximum exponent in decimal
FP64 15.95 308
FP42 9.33 308
FP32 7.22 38
FP21 3.91 38
FP16 3.31 5

Expressive ability of the significand is computed as following
10Y = 2x+1 x+1 is produced by hidden bit
y = (x+1)logy, 2.
Then, y denotes number of decimal digits, and x denotes number of bits of exponent part.

Type casting between FP21 and FP32

Left shows a Fortran pseudo code for type

FP32—FP21

#define fp21x3 integer(4) casting from FP21 to FP32

e R e R R I e RGN Y BT kd()l | hree FP21 data are stored by two 32bits integer
implicit none data format.
;egiig){.lgte”t(ln) +: al, a2, a3 B We implement type casting without changing
fE21X3 c internal bit information (reinterpret cast) by calling
call cast_fp32_to fp21x3(al, c) subroutine with different argument data type.
JEDRERVISA G LI LdeARnnn LR ODIREONN B To SIMDize type casting calls, we add a link time
call cast_fp32_to_fp2ix3(a2, c) optimization options to compiler for facilitating

= iand(c, int(zZ'fffffge0', 4))

b(1) = ior(b(1), shiftl(c, 10)) subroutine/function expansions.

Storing three FP21 data to two 32bits integer Is

b(2) = shiftr(c, 22)

call cast_fp32_to_fp21x3(a3, c) new optimization.

b(2) = ior(b(2), iand(c, int(Z'fffffsee’, 4))) ® In the previous study of FP21, authors are
end function ¥p32x3_to_rp2ix3_f store three FP21 data to 64bits integer.
subroutine cast_fp32_to fp2ix3(a, b) ® Number of computations per one SIMD

implicit none Instruction is capped by the widest data

fp21x3, intent(in) :: a format.

fp21x3, intent(out) :: b o _
b = 2 One 64bits integer : 8 data o gne 512bits SIMD

end subroutine cast_fp32_to_fp21x3 Two 32bits integer : 16 data 7

Outline

3. P3D application (ICCG method)

P3D : Steady State 3D Heat Conduction by FVM

We use P3D application for numerical evaluations

B Simulation of 3D heat conduction
® V-(AVp)+f =0
® Discretized by FVM
® Seven-point stencll

B Boundary conditions

® ¢(Xmin)~ d)(Xmax) > ¢(Ymin)~ ¢(Ymax)s d)(Zmin) =0

® d)(Zmax) =f
B Factor A : thermal diffusivity }{1
® A distribution of thermal diffusivity is showing right figure 7
vV A1=1.1<12<10% 2
B [CCG solver /11

® |C preconditioner is parallelized by multi-coloring method

with CM-RCM algorithm
CM-RCM : Cyclic-multicoloring + Reverse Cuthill Mckee

Coefficient matrix of P3D

The thermal diffusivity A in the target problem has strong impact on a condition number.

f

dy -dz o
— Jj=i—1
F i)
2 Ax,y,z Ax—l,y,z
dy - dz
— 24 Jj=i+1
H)
2 Ax,y,z Ax+1,y,z
dx - dz o
— Jj=1l—nx
2 o)
2 Ax,y,z A‘X,y—l,Z
dx - dz o
—] =1+ nx
2o
2 Ax,y,z)Lx,y+1,z
dx - dy o
Jj=l—nxXny
H)
2)lx,y,z)Lx,y,z—l
dx - dy

 J=li+nx Xny

TEm—
2)lx,y,z)Lx,y,z+1

N
k=1

0. others

If the factor A in the target problem has large difference,
diagonal and off-diagonal elements also have
large difference.

— We can control the condition number.

In this study, we change the factor A, in numerical
experiments for evaluating the difference among the
data formats. (1, is a constant)

10

|ICCG method

We apply low/adaptive precision to the IC preconditioner

If we change the data format of the....
B coefficient matrix — the problem to be solved may change.
B vectors excluding 7. q — the convergence ratio is changed significantly
because of low accuracy of inner-products
B matrix U"'D~1L~1 and vectors 7. g for the IC preconditioner
— It Is efficient because of high computational cost and
lower sensitivity to the convergence ratio.

Algorithm of ICCG
do k = 1, until converge
g = P9
(p.* ap¥)
1 = x* + ap* q": vector shows searching direction
k

r*:residal vector

k+1
k1= g (ar)pk’p =(q,r

k+1
;)

11

Applying arbitrary precisions to IC preconditioner

Considering two implementation to apply arbitrary precision to IC preconditioner
— Row-wise and column-wise

Evaluating both implementations and choose
better one on each system.

Row-wise

real(8) ALpre(DoF, NoC)

doj=1, NoC
doi=1, DoF

q(i) = q(i) — ALpre(i, j) * rd(idx_colum(i, j))
enddo
enddo

Column-wise

fp21x3 ALpre(DoF/3*2, NoC)
real(4) ALprel, ALpre2, ALpre3

doj=1, NoC
doi=1, DoF, 3
k=(Gi-1)/3*2+1
call fp21x3_to_floatx3_f(ALpre(k:, j), ALprel, ALpre2, ALpre3)
qi =49q(i) -ALprel = rd(idx_colum(i,)
q(i+1) = q(i+1) — ALpre2 = rd(idx_colum(i+1, j))
q(i+2) = q(i+2) — ALpre3 = rd(idx_colum(i+2, j))
enddo
enddo

fp21x3 ALpre(DoF, NoC/3*2)
real(4) ALprel, ALpre2, ALpre3

doj=1,NoC, 3
k=(—-1)/3*2+1
doi=1, DoF

call fp21x3_to_floatx3_f(ALpre(l, k:), ALprel, ALpre2, ALpre3)
q(i) = q(i) — ALprel * rd(idx_colum(i, j))
q(i) = q(i) — ALpre2 * rd(idx_colum(i, j+1))
q(i) = q(i) — ALpre3 * rd(idx_colum(i, j+2))
enddo
enddo

Outline

4. Numerical evaluations

13

Numerical environments

Env 1 : Oakforest-PACS (OFP)

B Xeon Phi
® 64 cores,128threads, MCDRAM

B Intel compiler (v19.1.1.304)
® Options : -O3 -xMIC-AVX512 -gopenmp -align array64byte —ipo
® Numerical environments: KMP_HW_ SUBSET=64c@?2,2t

Env 2 : Oakbridge-CX (OBCX)
B Xeon Gold Platinum 8280 x 2
® 56cores, 56threads, DDR4
B Intel compiler (v19.1.1.304)
® Options : -O3 -xHost -gopenmp -align array64byte —ipo

Env3 : Wisteria/BDEC-01 Odyssey (WO)
B A64FX
® 48cores, 48 threads, HBM?2
B Fujitsu compiler (4.5.0 tcscd-1.2.31)
® Options : -O3 -Kfast,openmp,zfil, A64FX,ARMV8_A
® Numerical environments : FLIB. FASTOMP=TRUE, FLIB. HPCFUNC=TRUE,
XOS MMM_L_PAGING_ POLICY=demand:demand:.demand

14

Conditions of application (P3D)

P3D application

B DoF : 2563 =16,777,216
B Thermal diffusivity : 11 =1, 1 < 12 < 1019

ICCG solver
B Parallelized IC preconditioner with multi-coloring approach

® Cyclic Multi-coloring + Reverse Cuthill-Mckee (CM-RCM)
® Number of colors for CM-RCM : 10 colors A
k
® Convergence condition is ”:0”2 <107° A2
2
® Storage format of the matrices is Sell-C-o %

B Combination of the data formats of the matrix and vector

v FP64-FP64 | descending order of the amount of memory transfer

v’ FP42-FP64

v FP32-FP64

v FP64-FP32 Blue: Only evaluate on OFP, OBCX

v EP32-FP32 Green:Only evaluate on WO

v FP21-FP32

v EP16-FP32 V * FP16 vector is not included because it dose not converged.

Denoted as data format of "matrix"vector”

Efficiency of two 32bits integers storing of FP21

Computational time [s]

© O B B N N W W
o »n o » o »n o u

Storing FP21 by two 32bits integer improves a performance by 26.1%.

Computational time of the preconditioner part

26 1%

B Storing FP21 by two 32bits integers have
shown 26.1% performance improvement
on OFP.

B |ess effective on OBCX

\ integer(8) |nteger(4) |nteger(8) |nteger(4

| |
OFP (Xeon Phi) OBCX (Cascadelake)

16

Overhead of type casting of adaptive precisions

The overhead of typecasting is enough small. (Up to 1.5%)

For measuring the overhead of typecasting, we prepared a dummy code that changed the FP21 or FP42
loading function to normal loading with the same amount of reference data.

Computational time [s]

3.5
3.0
2.5
2.0
1.5
1.0
0.5
0.0

OFP

Computational time [s]

OBCX
6.0

5.0
4.0
3.0
2.0
1.0
0.0

17

Comparison between Column-wise and Row-wise expansion

Column-wise expansion for implementing adaptive precision Is

faster than the row-wise.
— We use column-wise implementation for following evaluations.

OFP OBCX
7.0 6.0
= o
=
£ 20 S 4.0
S 4.0 ©
S S 3.0
gt 3.0 '4;;
S £ 2.0
320 3
S 1.0 I 5 10
(@) (@)
0.0 0.0
¢ ¢ ¢ ¢ A
& & & & & & & K
& Q® & QP & Q Q &
\» N O 8
(JO (JO @) @)

The difference between data format on convergence ratio

Number of iterations

Number of iterations

2500

2000

1500

1000

500

0

Different combination of data formats shows different convergence ratio.

——FP64-FP64 —e—FP42-FP64
~—FP32-FP64 ——FP32-FP32
——FP21-FP32

OFP

B There is no impact of lower data-precision
under good conditions.
B FP32-FP16 is not converged with condition

% > 10> — Beyond expression ability of FP16
1
B Convergence ratio get worse on ill-condition by

changing vectors FP64—FP32

1.00E+00 1.00E+02 1.00E+04 1.00E+06 1.00E+08 1.00E+10

2500

2000

1500

1000

500

0

1.00E+00 1.00E+03 1.00E+06

A2

——FP64-FP64 —e—FP42-FP64
~—FP32-FP64 ——FP32-FP32

——FP21-FP32

A2

3000

N
Ul
o
o

2000
1500
1000
500
0

Number of iterations

OBCX

1.00E+09

—e—SCS FP64-FP64 —e—SCS FP32-FP64 WO
SCS FP32-FP32 —+-SCS FP16-FP64

——SCS FP16-FP32 (“—/\//
M Ur:?nverged

1.00E+00 1.00E+02 1.00E+04 1.00E+06 1.00E+08 1.00E+10

A2 19

Performance improvement by low/adaptive precisions

Low/Adaptive precision shows reduce computational time.

40 | [——FP64-FP64 —e—FP42-FP64
o —*-FP32-FP64 —e-FP32-FP32 B FP16-FP32 was the fastest within the good condition.
% 30 L rrendnes ’rp.///::* ® 17.3% compared with FP64-FP64
@ ' B FP21-FP32 was the fastest within the good condition.
3 20 on OFP and OBCX.
*glo e - ==2al ® 18.4%(OFP), 18.6%(0OBCX)
§ OFP B FP32-FP64 was the fastest in intermediate conditions.
0 B FP21-FP32 was faster in worse condition, again.
1.00E+00 1.00E+02 1.00E+04 1.00E+06 1.00E+08 1.00E+10 ® 12.6%(0OFP), 13.7%(OBCX)

A2
——FP64-FP64 ——FP42-FP64

~e—FP32-FP64 —»—FP32-FP32
——FP21-FP32
40 '

N
o

(o))
o

——SCS FP64-FP64 —=—SCS FP32-FP64

SCS FP32-FP32 —+-SCS FP16-FP64
——SCS FP16-FP32 e

[EEN
(9]

- —z
Rt

20

o

Computational time [s]
o
b

Computational time [s]

OBCX
0 0

1.00E+00 1.00E+02 1.00E+04 1.00E+06 1.00E+08 1.00E+10 1.00E+00 1.00E+02 1.00E+04 1.00E+06 1.00E+08 1.00E+10
A2 A2 20

Outline

5. Conclusion

21

Conclusion

B Evaluate the usefulness of low precision such as FP32 and FP16 and arbitrary precision such
as FP42 and FP21 in real applications where the use of FP64 is typical.
® \We choose the P3D for the evaluations as the real application.
® |CCG solveris included in the P3D and it is a typical application using FP64.
B \We optimize the load and store routine of FP21 on CPUs for general purpose.
® \Ve change a storing data type of FP21 from one 64bits integer to two 32bits integers.

B |n the numerical evaluations, we apply low/adaptive precisions to an IC preconditioner part.
® The preconditioner part is implemented with Sell-C- storage format.
B The use of low/adaptive precision improve performance of ICCG method.
® The effectiveness of Low/adaptive precision is high within the good conditions and
expressible range of FP16
® The fastest combination of the matrix and vector is changed depending on the condition of
the coefficient matrix.

Future work
B Considering an auto-tuning approach to dynamically select the best precision.

22

23

