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 Mixed precision computing
◦ GMRES and its preconditioned version
 Invited talk by Dr. Fukaya
◦ H-matrix
 R. Ooi, T. Iwashita, T. Fukaya, A. Ida and R. Yokota, Effect of 

Mixed Precision Computing on H-matrix Vector Multiplication in 
BEM Analysis, ACM/IPSJ HPC Asia 2020, pp. 92-101.

 SIMD friendly algorithm for iterative linear 
solver
◦ IC and ILU preconditioning

https://dl.acm.org/doi/10.1145/3368474.3368479
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 Li Senxi (Hokkaido Univ. > The University of Tokyo)

 Takeshi Iwashita, Senxi Li, Takeshi Fukaya, “Hierarchical block 
multi-color ordering: a new parallel ordering method for 
vectorization and parallelization of the sparse triangular solver in 
the ICCG method”, CCF Transactions on High Performance 
Computing (Springer), volume 2, pages 84–97, (2020).

 https://doi.org/10.1007/s42514-020-00030-z (Open Access)

https://doi.org/10.1007/s42514-020-00030-z


Iwashita lab.

 A sparse triangular solver is a main component of the 
Gauss-Seidel (GS)  smoother,  SOR method and IC/ILU 
preconditioning, which are used as building blocks in 
various computational science or engineering analyses.

 However, it is well known that the sparse triangular solver, 
which consists of forward and backward substitutions, 
cannot be straightforwardly parallelized. 

 Parallel ordering is one of the most popular methods for 
parallelization of a sparse triangular solver. 
◦ But, it entails a trade-off problem between convergence and 

number of synchronization points.
 One of the solutions for the trade-off problem is block 

multi-coloring. 
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 Block multi-coloring (BMC)
◦ Multi-color ordering is applied to blocks of unknowns.

 In the context of parallel IC/ILU preconditioning, the block coloring 
was investigated in a finite difference method (Iwashita et al. SISC 2005). 
And, the method was enhanced for a general sparse linear system 
(Iwashita et al. IPDPS2012). 

 This technique has been used in various applications because of its 
advantages in terms of convergence, data locality, and the number of 
synchronizations (Semba et al. 2013; Tsuburaya 2015; Ruiz et al. 2018 etc.)

 However, the block multi-coloring method has a drawback in its 
implementation using SIMD vectorization. 

 In this research, we aimed to develop a new parallel ordering 
that has the same convergence rate as BMC and makes the 
SIMD vectorization of substitutions possible. 
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 We consider an n-dimensional linear system of equation: 𝑨𝑨𝒙𝒙 = 𝒃𝒃.
 We focus on parallelization of the sparse triangular solver:
◦ 𝒚𝒚 = 𝑳𝑳−𝟏𝟏𝒓𝒓, 𝒛𝒛 = 𝑼𝑼−𝟏𝟏𝒚𝒚
◦ 𝑳𝑳 and 𝑼𝑼 are lower and upper triangular matrices, respectively. They have the 

same nonzero element pattern as 𝑨𝑨. (Gauss-Seidel, SOR, IC/ILU 
preconditioning cases) 

◦ The sparse triangular solver (forward and backward substitutions) are not 
straightforwardly parallelized.

 Reordering (parallel ordering)
◦ One of the most popular techniques for parallelization of the sparse triangular 

solver.
◦ Reordering: permutation of the elements of index set I
 𝑰𝑰 = 1, 2, … ,𝑛𝑛 that corresponds to the index of each unknown.
 𝑖𝑖 -th unknown is moved to 𝜋𝜋 𝑖𝑖 -th unknown in the new system.
 New (reodered) linear system: �𝑨𝑨�𝒙𝒙 = �𝒃𝒃, �𝒙𝒙 = 𝑷𝑷𝜋𝜋𝑻𝑻𝒙𝒙, �𝑨𝑨 = 𝑷𝑷𝜋𝜋𝑨𝑨𝑷𝑷𝜋𝜋𝑻𝑻, �𝒃𝒃 = 𝑷𝑷𝜋𝜋𝒃𝒃
 �𝑨𝑨 has a suitable form for parallel processing.
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 When �𝒙𝒙(𝑗𝑗) = 𝑷𝑷𝜋𝜋𝒙𝒙(𝑗𝑗) holds at every j-th step under initial setting �𝒙𝒙(0) =
𝑷𝑷𝜋𝜋𝒙𝒙(0), we say the iterative solver has equivalence of convergence for two 
original and reordered linear systems. (Upper subscript means the 
iteration count.) 

 Jacobi method and most of non-preconditioned Krylov subspace methods 
have equivalence of convergence.
◦ Jacobi method and most of Krylov subspace methods are not affected by the ordering.

 Ordering usually affects the convergence of the iterative solver involving 
(S)GS, (S)SOR, or IC(0)/ILU(0) preconditioning parts.
◦ However, when the condition shown in the next slide, which is called “Equivalent Reordering 

(ER) Condition”, is satisfied, the equivalence of convergence holds for a solver involving 
these preconditioning methods.
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ER condition –
∀𝑖𝑖1, 𝑖𝑖2 ∈ 𝐼𝐼 such that 𝑎𝑎𝑖𝑖1,𝑖𝑖2 ≠ 0 or 𝑎𝑎𝑖𝑖2,𝑖𝑖1 ≠ 0, sgn 𝑖𝑖1 − 𝑖𝑖2 = sgn 𝜋𝜋(𝑖𝑖1) − 𝜋𝜋(𝑖𝑖2) .

𝑎𝑎𝑖𝑖1,𝑖𝑖2: 𝑖𝑖1-th row 𝑖𝑖2-th column element of original coefficient matrix

In other words
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Two orderings have an identical ordering graph.

Doi, S., and Lichnewsky, A., Res. Report No. 
1452. INRIA, France, (1991)

The sketch of the proof is
given in the appendix of our
paper.
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 Design points for new ordering
◦ The same convergence rate of block multi-color ordering
◦ The same number of synchronization points for multi-threads
◦ Availability of SIMD vectorization for forward-backward substitutions

We first apply the (algebraic) block multi-color ordering to the linear system.

While keeping the ordering graph, we reorder it again (secondary reordering).
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(Nonzero entries exist only in dotted parts)
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Secondary reordering of HBMC ordering (w =4)

Level-1 block Level-1 block

Division of unknowns to blocks in BMC ordering (BMC blocks)

We generate level-1 blocks each of which consists of w BMC blocks in 
each color. (w : SIMD length)

We reorder the unknowns in each level-1 block. It does not affect the 
ordering graph between the unknowns belonging to different level-1 
blocks.
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bks+1
(c) bks+2

(c) bks+3
(c) bks+4

(c)

Level 1 block which consists of 4 BMC blocks (w=4)

Level 2
block

New order
Level 2
block

Level 2
block

The unknowns in the same level-2 block has no data relationship.
→ SIMD vectorization for the substitutions is possible.  (SIMD length: w)

The above reordering process does not change the ordering graph that 
corresponds to the unknowns in the level 1 block.

The new ordering is an equivalent ordering to BMC.
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Color 1

Color 2

Color 3

Level 2 block Level 1 block

The coefficient matrix arising from 
HBMC ordering.

 The parallelism of level-1 
blocks is exploited by multiple 
threads.

 The parallelism among 
unknowns in a level-2 block is 
exploited by SIMD instructions.

Multithreaded and vectorized implementation of 
forward substitution using intrinsic functions
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 The program is written in C. 
 We used three types of nodes.
◦ A node of Cray XC40 (Xeon Phi KNL processor)
◦ A node of Cray CS400 (2 Xeon Broadwell processors)
◦ A node of Fujitsu CX2550 (2 Xeon Skylake processors) 

 Three multi-threaded IC(0)-CG solvers based on MC, BMC, 
and HBMC orderings were tested.

 Storage format
◦ Coefficient matrix: CSR
◦ Preconditioner: CSR(MC, BMC), SELL(HBMC)

 The convergence criterion: relative residual norm less 
than 10-7

 Test problems: 7 matrices from SuiteSparse Matrix 
collection and a linear system arising in finite edge-
element eddy current analysis
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 We checked the convergence behaviors of BMC and HBMC.

G3_circuit Ieej

 The two lines of the relative residual norms  for BMC and HBMC overlap, 
which indicates that the solvers had an equivalent solution process. 

 The equivalence of convergence was also confirmed in all test cases.



Iwashita lab.

 BMC and HBMC are superior to MC in all tests.
 In 5 out of 7 datasets, HBMC outperforms BMC.
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 BMC and HBMC are superior to MC with an 
appropriate block size in all tests.

 HBMC exhibits better performance than BMC.
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Results on Xeon Broadwell
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 BMC and HBMC are superior to MC with an appropriate block size in all tests.
 HBMC exhibits better performance than BMC except for Audikw_1 test.

(When SIMD width is set to be 8, the number of padding elements for SELL format is large in 
the Audikw_1 test.)
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Results on Xeon Skylake
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 A new parallel ordering technique, hierarchical block multi-color ordering (HBMC), was 
proposed for vectorizing and multithreading the sparse triangular solver.

 HBMC was designed to maintain the advantages of the block multi-color ordering 
(BMC) in terms of convergence and the number of synchronizations. In the method, the 
coefficient matrix was transformed into the matrix with hierarchical block structures.
◦ The level-1 blocks were mutually independent in each color, which was exploited in multithreading.
◦ Corresponding to the level-2 block, the substitution was converted into w(= SIMD width) independent steps, 

which were efficiently processed by SIMD instructions. 

 Numerical tests were conducted to examine the proposed method using seven datasets 
on three types of computational nodes. The numerical results confirmed the 
equivalence of the convergence of HBMC and BMC. Moreover, numerical tests 
indicated that HBMC outperformed BMC in 18 out of 21 test cases (seven datasets ×
three systems), which confirmed the effectiveness of the proposed method.

 Future work: we will examine our technique for other application problems, particularly 
a large-scale multigrid application. 
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Thank you
We will welcome your visit to Hokkaido Univ. 
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